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Outline

•  UQ for NNs: review and state of the art 
•  Needed for SciML workflows: active learning, comp. design…  
•  Loss landscape perspective, challenges, metrics

•  Weight parametrization in Residual NNs (ResNets) 
•  Reduces generalization gap 
•  Enables easier UQ

•  QUiNN: ongoing work and software plug



Probabilistic NN == Bayesian NN

Ghahramani, “Probabilistic Machine Learning and Artificial Intelligence”. Nature, 2015

“Nearly all approaches to probabilistic programming are Bayesian since it is hard  
to create other coherent frameworks for automated reasoning about uncertainty” 

• Bayesian NN methods have been around since 90s [MacKay, 1992; Neal, 1996] 
  

• Full Bayesian treatment was infeasible back then….  
• … and still is, generally, not industry-standard by any means.



UQ-for-NN: Bayesian perspective

Training for NN weights reformulated as a Bayesian inference problem 

Negative Log-Posterior Training Loss Function≃ a | |y − fw(x) | |2 + b | |w | |2 ≃

✓   Markov chain Monte Carlo (MCMC) sampling; Hamiltonian MC [Levy, 2018] 
๏   Tuning is an art: essentially infeasible outside academic examples

exp (−
| |w | |2

2λ2 )



UQ-for-NN: variational methods
•  Bayes by Backprop [Blundell, 2015] 

•  has become mainstream in ML literature 
•  also called BNN 

•  Mean-field VI (i.e. i.i.d. normal variational class) 
•  Reparameterization trick 
•  Gaussian mixture prior: wide and narrow 
•  Variational st.dev.  

•  SVI, ADVI, BBVI, BBBVI, CCVI, CATVI, ….  

σ = ln(1 + eρ)

๏ Typically underestimates predictive uncertainty
๏ Restricted to variational class 
๏ Hard to train



UQ-for-NN: approximate methods

•  Probabilistic backprop, or PBP [Hernandez-Lobato, 2015]  

•  Layer-to-layer updates from  to  
•  Deriving back propagation formulas for this update 

•   updates similar to PC propagation (1st order Gauss-Hermite PC) 

𝒩(μ, σ2) 𝒩(μnew, σ2
new)

μ, σ2 → μnew, σ2
new

๏ Did not really lift of
๏ Original implementation in Theano

•  Laplace methods: [Ritter, 2018, Daxberger, 2021] 
✓ Relies on Gaussian apprx near maximum;  
✓ Can be generalized to GMM 
๏ Good only locally 
๏ Hessian computation challenging
๏ Fails to explore the full posterior



UQ-for-NN: other (more empirical) methods
•  Ensembling methods: work surprisingly well! 
✓Deep Ensembles [Lakshminarayanan, 2017];  
✓ Interpreting ensembles from Bayesian perspective [Garipov, 2018; Fort, 2019] 
✓Randomized MAP Sampling (anchored ensembles) [Pearce, 2020] 
✓MC-Dropout [Gal, 2015] 
✓ Stochastic Weight Averaging – Gaussian (SWAG) [Maddox, 2019]:shipped w PyTorch1.6 
✓Delta-UQ [Anirudh, 2021], 
✓AutoDEUQ [Egele, 2022]. 
๏ Often little theoretical backing 
๏ Too expensive, albeit parallelizable 

•  Direct learning of predictive RV 
✓Distance-based methods [Postels, 2022], 
✓DEUP [Lahlou, 2023] 
✓AVUC [Krishnan, 2020]. 

• Other 
✓ Information-bottleneck UQ [Guo, 2023], 
✓Conformal UQ [Hu, 2022], 
✓Bayesian Last Layer [Watson, 2021], 
✓ TAGI [Goulet, 2021].



Challenges of UQ-for-NN

✓  Complicated posterior distribution (loss landscape):  
•  invariances and symmetries: permuting some weights leads to the same loss, 
•  multimodality: multiple local minima in the weight space, 
•  “ridges”: low-d manifolds with same or similar loss. 

✓  Prior on weights hard to elicit/interpret/defend 
•  what does a uniform/gaussian prior on weight matrix elements mean? 
•  perhaps a prior is needed in the ‘matrix’-space, or… 
•  driven by outputs, or physics-constraints. 

✓  Large number of weights:  
•  scales linearly with depth and quadratically with width, 
•  hard to visualize the high-d surface.



How to measure if uncertainty estimate is correct?

✓ Benchmarking efforts are picking up: 
• UCI Dataset, both regression and classification 
• Recent work specific to Bayesian NN  
[Yao, 2019; Navratil, 2021; Nado, 2021; Staber, 2022; Basora, 2023]

✓ Still a lot of eyeballing and 1d fit examples,  
✓ Striving to match a GP

Uncertainty-Accuracy Plot Posterior predictive with no data —> Prior predictive



Loss Landscape Perspective

•  Visualization of loss surface is key to help understand and characterize NN 
performance [Li, 2018; Garipov, 2018; Fort, 2019; Yang, 2021],

•  Incorporating prior knowledge should regularize the loss/log-posterior landscapes, 
making them more amenable to sampling and analysis. 

•  This means both: 
•  sof regularization (like PINN) and  
•  hard architectural changes  

•  physics-driven rewiring (invariance, symmetries, positivity, feature extraction),  
•  numerical convenience (ResNet/NODE, weight reparameterization, layer/batch 
normalization). 



ResNet/NODE in regression setting

[E, 2017; Chen, 2018; Ruthotto, 2018]



ResNet shortcuts regularize loss landscape

See [Lee, 2017] for a more comprehensive study. 

Conventional MLP: xn+1 = σ(Wnxn + bn) ResNet: xn+1 = xn + σ(Wnxn + bn)



Weight Parameterization inspired by NODE analogy

dx
dt

= σ(W(t)x + b(t))Neural ODE: 

xn+1 = xn + σ(Wnxn + bn)ResNet:

Parameterize weight matrices with respect to time (aka depth) 

 and train for ’s.W(t; θ) θ



Weight Parameterization as a regularization tool



Weight Parameterization improves generalization



Weight Parameterization improves accuracy



WP ResNet enables UQ
•  Number of parameters in ResNets, as well as MLPs, grows with linearly depth. 
•  Number of parameters  in weight-parameterized ResNets is independent of depth. 
•  We can easily achieve regimes with manageable MCMC dimensionality and  
    posterior PDFs that out-of-box MCMC methods can easily sample. 
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•  We can easily achieve regimes with manageable MCMC dimensionality and  
    posterior PDFs that out-of-box MCMC methods can sample. 



WP ResNet enables UQ
•  Number of parameters in ResNets, as well as MLPs, grows linearly with depth. 
•  Number of parameters  in weight-parameterized ResNets is independent of depth. 
•  We can easily achieve regimes with manageable MCMC dimensionality and  
    posterior PDFs that out-of-box MCMC methods can sample. 

MLP WP-ResNet



QUiNN: github.com/sandialabs/quinn



QUiNN: github.com/sandialabs/quinn

QUINNBase

MCMC VI Ens

RMSDeep Ens.AMCMC HMC Bayes-by-
Backprop

uqnet = QUINNBase(torch.nn.module)

Laplace BLL Conformal

SWAGPBP

D-UQ

MC-Dropout
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Summary

•  UQ for NN 
• An attempt to overview the methods 
• Most methods rely on loss landscape  

•  ResNet/ODE: 
• Draw inspiration from ODE and infinite depth limit 
• ResNets regularize the learning problem, smoother loss/log-posterior surface 
• Weight parameterization (WP) allows regularization without losing much expressivity 
• Full Bayesian UQ treatment made more feasible with WP ResNets 

•  Implemented in QUiNN: github.com/sandialabs/quinn  modular code as a wrapper to 
categories of methods (MCMC/HMC, VI, RMS, Ens, Laplace, Dropout)

• Metrics/diagnostics of accuracy 
• Major challenges  

http://github.com/sandialabs/quinn
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Additional



Randomized MAP Sampling (RMS)
[Pearce, 2020]

•  Consider regularized training problem min (α | |y − NNw(x) | |2 + β | |w − w* | |2 )

−log P(w |y) = | |y − NNw(x) | |2 + R(w)•  Consider log-posterior:

•  If one samples , the set of deterministic solutions 
approximately  forms the posterior

w* from prior  ∼ e−R(w)

P(w |y)

• It is exact for gaussian priors, linear models:  
but the authors show that it extends well to larger class, including NNs

• What is missing: proper attribution of uncertainty: is it really 
RMS or the initialization that drives the good results? 


