Quantifying Uncertainties in Weight-Parameterized Residual Neural Networks

Khachik Sargsyan (SNL),
Oscar Diaz-Ibarra (SNL), Javier Murgoitio-Esandi (USC),
Joshua Hudson (U Arkansas), Marta D'Elia (Stanford and Pasteur Labs), Habib Najm (SNL)

SIAM UQ, Trieste, Italy March 1, 2024

Outline

- UQ for NNs: review and state of the art
 - Needed for SciML workflows: active learning, comp. design...
 - Loss landscape perspective, challenges, metrics
- Weight parametrization in Residual NNs (ResNets)
 - Reduces generalization gap
 - Enables easier UQ
- QUiNN: ongoing work and software plug

Probabilistic NN == Bayesian NN

Ghahramani, "Probabilistic Machine Learning and Artificial Intelligence". Nature, 2015

"Nearly all approaches to probabilistic programming are **Bayesian** since it is hard to create other coherent frameworks for automated reasoning about uncertainty"

- Bayesian NN methods have been around since 90s [MacKay, 1992; Neal, 1996]
- Full Bayesian treatment was infeasible back then....
 - ... and still is, generally, not industry-standard by any means.

UQ-for-NN: Bayesian perspective

Training for NN weights reformulated as a Bayesian inference problem

Posterior Prior
$$p(w | y) \propto p(y | w) p(w)$$
 Likelihood

$$\propto \exp\left(-\frac{||y - f_w(x)||^2}{2\sigma^2}\right) \exp\left(-\frac{||w||^2}{2\lambda^2}\right)$$

Negative Log-Posterior
$$\simeq a ||y - f_w(x)||^2 + b||w||^2 \simeq$$
 Training Loss Function

- ✓ Markov chain Monte Carlo (MCMC) sampling; Hamiltonian MC [Levy, 2018]
- Tuning is an art: essentially infeasible outside academic examples

UQ-for-NN: variational methods

- Bayes by Backprop [Blundell, 2015]
 - has become mainstream in ML literature
 - also called BNN
 - Mean-field VI (i.e. i.i.d. normal variational class)
 - Reparameterization trick
 - Gaussian mixture prior: wide and narrow
 - Variational st.dev. $\sigma = ln(1 + e^{\rho})$
- SVI, ADVI, BBVI, BBBVI, CCVI, CATVI,
- Typically underestimates predictive uncertainty
- Restricted to variational class
- Hard to train

UQ-for-NN: approximate methods

- Probabilistic backprop, or PBP [Hernandez-Lobato, 2015]
 - Layer-to-layer updates from $\mathcal{N}(\mu, \sigma^2)$ to $\mathcal{N}(\mu_{new}, \sigma_{new}^2)$
 - Deriving back propagation formulas for this update
 - $\mu, \sigma^2 \to \mu_{new}, \sigma_{new}^2$ updates similar to PC propagation (1st order Gauss-Hermite PC)
 - Did not really lift off
 - Original implementation in Theano
- Laplace methods: [Ritter, 2018, Daxberger, 2021]
 - √ Relies on Gaussian apprx near maximum;
 - √ Can be generalized to GMM
 - Good only locally
 - Hessian computation challenging
 - Fails to explore the full posterior

UQ-for-NN: other (more empirical) methods

- Ensembling methods: work surprisingly well!
 - ✓ Deep Ensembles [Lakshminarayanan, 2017];
 - ✓ Interpreting ensembles from Bayesian perspective [Garipov, 2018; Fort, 2019]
 - √ Randomized MAP Sampling (anchored ensembles) [Pearce, 2020]
 - ✓ MC-Dropout [Gal, 2015]
 - ✓ Stochastic Weight Averaging Gaussian (SWAG) [Maddox, 2019]:shipped w PyTorch1.6
 - ✓ Delta-UQ [Anirudh, 2021],
 - ✓ AutoDEUQ [Egele, 2022].
 - Often little theoretical backing
 - Too expensive, albeit parallelizable

Direct learning of predictive RV

- ✓ Distance-based methods [Postels, 2022],
- **√** DEUP [*Lahlou*, 2023]
- ✓ AVUC [Krishnan, 2020].

Other

- ✓ Information-bottleneck UQ [Guo, 2023],
- ✓ Conformal UQ [Hu, 2022],
- √ Bayesian Last Layer [Watson, 2021],
- **√** TAGI [Goulet, 2021].

Challenges of UQ-for-NN

- ✓ Complicated posterior distribution (loss landscape):
 - invariances and symmetries: permuting some weights leads to the same loss,
 - multimodality: multiple local minima in the weight space,
 - "ridges": low-d manifolds with same or similar loss.
- ✓ Prior on weights hard to elicit/interpret/defend
 - what does a uniform/gaussian prior on weight matrix elements mean?
 - perhaps a prior is needed in the 'matrix'-space, or...
 - driven by outputs, or physics-constraints.
- ✓ Large number of weights:
 - scales linearly with depth and quadratically with width,
 - hard to visualize the high-d surface.

How to measure if uncertainty estimate is correct?

- ✓ Still a lot of eyeballing and 1d fit examples,
- ✓ Striving to match a GP
- √ Benchmarking efforts are picking up:
 - UCI Dataset, both regression and classification
 - Recent work specific to Bayesian NN

[Yao, 2019; Navratil, 2021; Nado, 2021; Staber, 2022; Basora, 2023]

Uncertainty-Accuracy Plot

Posterior predictive with no data —> Prior predictive

Loss Landscape Perspective

- Visualization of loss surface is key to help understand and characterize NN performance [Li, 2018; Garipov, 2018; Fort, 2019; Yang, 2021],
- Incorporating prior knowledge should regularize the loss/log-posterior landscapes, making them more amenable to sampling and analysis.
- This means both:
 - soft regularization (like PINN) and
 - hard architectural changes
 - physics-driven rewiring (invariance, symmetries, positivity, feature extraction),
 - numerical convenience (ResNet/NODE, weight reparameterization, layer/batch normalization).

ResNet/NODE in regression setting

ResNet (discrete)

$$\begin{cases} x_{1} = x + \alpha_{0}\sigma(W_{0}x_{0} + b_{0}) \\ \vdots \\ x_{n+1} = x_{n} + \alpha_{n}\sigma(W_{n}x_{n} + b_{n}) \\ \vdots \\ y = x_{L-1} + \alpha_{L-1}\sigma(W_{L-1}x_{L-1} + b_{L-1}) \end{cases}$$

Neural ODE (continuous)

$$\frac{d\mathbf{x}}{dt} = \boldsymbol{\sigma}(\mathbf{W}(t)\mathbf{x} + \boldsymbol{b}(t))$$

$$\mathbf{x}(0) = \mathbf{x} \qquad \mathbf{x}(T) = \mathbf{y}$$

ResNet shortcuts regularize loss landscape

See [Lee, 2017] for a more comprehensive study.

Weight Parameterization inspired by NODE analogy

Neural ODE:
$$\frac{dx}{dt} = \sigma(W(t)x + b(t))$$

ResNet:
$$x_{n+1} = x_n + \sigma(W_n x_n + b_n)$$

Parameterize weight matrices with respect to time (aka depth)

 $W(t;\theta)$ and train for θ 's.

Weight Parameterization as a regularization tool

ResNet: $x_{n+1} = x_n + \alpha_n \sigma(W_n x_n + b_n)$

Training for weight matrices $W_0, W_1, ...$

Heavily overparameterized, does not generalize well

Parameterize $W(t; \theta)$ and train for θ 's.

Parameterization of weight functions $= W_{tL/T}$ Cubic $W(t; \theta)$ $= \theta_1 t^3 + \theta_2 t^2 + \dots$

Business

Dial down

complexity

Parameterization of weight functions reduces capacity and improves generalization

Linear $W(t; \theta)$ = $\theta_1 t + \theta_2$

NonPar $W(t; \theta)$

- Generalization Gap correlates with overparameterization
- Weight-parameterized ResNets reduce Generalization Gap

Each dot is a training run with varying weight parameterization functions

Weight Parameterization

Weight Parameterization improves accuracy

WP ResNet enables UQ

- Number of parameters in ResNets, as well as MLPs, grows with linearly depth.
- Number of parameters in weight-parameterized ResNets is independent of depth.
- We can easily achieve regimes with manageable MCMC dimensionality and posterior PDFs that out-of-box MCMC methods can easily sample.

WP ResNet enables UQ

- Number of parameters in ResNets, as well as MLPs, grows linearly with depth.
- Number of parameters in weight-parameterized ResNets is independent of depth.
- We can easily achieve regimes with manageable MCMC dimensionality and posterior PDFs that out-of-box MCMC methods can sample.

WP ResNet enables UQ

- Number of parameters in ResNets, as well as MLPs, grows linearly with depth.
- Number of parameters in weight-parameterized ResNets is independent of depth.
- We can easily achieve regimes with manageable MCMC dimensionality and posterior PDFs that out-of-box MCMC methods can sample.

QUINN: github.com/sandialabs/quinn

Deterministic

Probabilistic

torch.nn.module

wrapper(torch.nn.module)

```
uqnet = MCMC_NN(nnet)

class MCMC_NN(QUiNNBase):
    def __init__(self, nnmodule, verbose=True):
        super(MCMC_NN, self).__init__(nnmodule)
        self.verbose = verbose
```

ugnet = VI_NN(nnet)

```
class VI_NN(QUiNNBase):
    def __init__(self, nnmodule, verbose=False):
        super(VI_NN, self).__init__(nnmodule)
        self.bmodel = BNet(nnmodule)
        self.verbose = verbose
```

ugnet = Ens_NN(nnet, nens=nmc)

```
class Ens_NN(QUiNNBase):
    def __init__(self, nnmodule, nens=1, verbose=False):
        super(Ens_NN, self).__init__(nnmodule)
        self.verbose = verbose
        self.nens = nens
```

MCMC

Variational Inference

Ensembling

QUINN: github.com/sandialabs/quinn

uqnet = QUINNBase(torch.nn.module)

Prior

WP-ResNet

Prior

Summary

- UQ for NN
 - An attempt to overview the methods
 - Most methods rely on loss landscape

- Metrics/diagnostics of accuracy
- Major challenges

- ResNet/ODE:
 - Draw inspiration from ODE and infinite depth limit
 - ResNets regularize the learning problem, smoother loss/log-posterior surface
 - Weight parameterization (WP) allows regularization without losing much expressivity
 - Full Bayesian UQ treatment made more feasible with WP ResNets
- Implemented in QUiNN: github.com/sandialabs/quinn modular code as a wrapper to categories of methods (MCMC/HMC, VI, RMS, Ens, Laplace, Dropout)

General probabilistic NN:

- Z. Ghahramani, "Probabilistic machine learning and artificial intelligence". Nature 521, 452–459 (2015)
- D. J. C. MacKay, "A practical Bayesian framework for backpropagation networks". Neural Computation 4 448–472 (1992)
- R. M. Neal, "Bayesian Learning for Neural Networks". Springer, New York (1996)

UQ for NN methods:

- D. Lévy, M. D. Hoffman, and J. Sohl-Dickstein, "Generalizing Hamiltonian Monte Carlo with Neural Networks". ICLR (2018)
- C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, "Weight uncertainty in neural networks". arXiv:1505.05424 (2015)
- J.M. Hernández-Lobato, R. Adams, "Probabilistic backpropagation for scalable learning of Bayesian neural networks". ICML (2015)
- H. Ritter, A. Botev, D. Barber, "A Scalable Laplace Approximation for Neural Networks", ICLR (2018)
- E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, P. Hennig, "Laplace Redux-Effortless Bayesian Deep Learning" Advances in neural inf. proc. systems 34 (2021)
- Y. Gal, Z. Ghahramani, "Dropout as a Bayesian approximation: representing model uncertainty in deep learning". ICML (2016)
- B. Lakshminarayanan, A. Pritzel, and C. Blundell, "Simple and scalable predictive uncertainty estimation using deep ensembles". NIPS'17. 6405–6416 (2017)
- T. Pearce, F. Leibfried, A. Brintrup, "Uncertainty in Neural Networks: Approximately Bayesian Ensembling". Artificial Intelligence and Statistics, 108:234-244 (2020)s" Machine Learning: Science and Technology, 3-4 (2022)
- Y. Yang, L. Hodgkinson, R. Theisen, J. Zou, J. E. Gonzalez, K. Ramchandran, M. Mahoney. "Taxonomizing local versus global structure in neural network loss landscapes", NIPS (2021)
- R. Anirudh, J. J. Thiagarajan. "Delta-UQ: Accurate Uncertainty Quantification via Anchor Marginalization", arxiv.org/abs/2110.02197 (2021)
- R. Krishnan, O. Tickoo, "Improving model calibration with accuracy versus uncertainty optimization". arXiv:2012.07923 (2020)

UQ for NN methods, cont.:

- W.J. Maddox, et al., "A simple baseline for Bayesian uncertainty in deep learning". NIPS (2019)
- T Garipov et al., "Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs". NIPS (2018)
- S. Fort, H. Hu, B. Lakshminarayanan, Deep Ensembles: A Loss Landscape Perspective", arxiv.org/abs/1912.02757, (2019)
- H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, "Visualizing the Loss Landscape of Neural Nets, NIPS (2018)
- Y. Hu, J. Musielewicz, Z. W. Ulissi and A. J. Medford, "Robust and scalable uncertainty estimation with conformal prediction for machine-learned interatomic potentials" Machine Learning: Science and Technology, 3-4 (2022)
- L. Guo, H. Wu, W. Zhou, Y. Wang, T. Zhou, "IB-UQ: Information bottleneck based uncertainty quantification for neural function regression and neural operator learning", https://arxiv.org/abs/2302.03271 (2023)
- J. Postels et al, "On the Practicality of Deterministic Epistemic Uncertainty", ICLR (2022)
- J. Watson, J. A Lin, P. Klink, J. Pajarinen, J. Peters, "Latent Derivative Bayesian Last Layer Networks", AISTATS (2021)
- S. Lahlou, M. Jain, H. Nekoei, V. Butoi, P. Bertin, J. Rector-Brooks, M. Korablyov, Y. Bengio "DEUP: Direct Epistemic Uncertainty Prediction", TMLR (2023)
- R. Egele, et al., "AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification," ICPR Proceedings, Montreal, QC, Canada, 2022 pp. 1908-1914 (2022)
- J-A. Goulet, L.-H. Nguyen, and S. Amiri, "Tractable approximate Gaussian inference for Bayesian neural networks", JMLR, 20-1009, 22(251), pp. 1-23 (2021)

Neural ODE:

- R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, "Neural ordinary differential equations". NIPS'18 (2018).
- L. Ruthotto, E. Haber, "Deep neural networks motivated by partial differential equations". arXiv preprint arXiv:1804.04272 (2018)
- W. E, "A Proposal on Machine Learning via Dynamical Systems". Commun. Math. Stat. 5, 1–11 (2017)

Literature

Benchmarks:

- UCI Dataset, https://archive.ics.uci.edu/datasets
- J. Yao, W. Pan, S. Ghosh, F. Doshi-Velez, "Quality of Uncertainty Quantification for Bayesian Neural Network Inference", https://arxiv.org/abs/1906.09686 (2019)
- J. Navratil, B. Elder, M. Arnold, S. Ghosh, P. Sattigeri, "Uncertainty Characteristics Curves: A Systematic Assessment of Prediction Intervals", https://arxiv.org/abs/2106.00858 (2021)
- Z. Nado et al. "Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning", https://github.com/google/uncertainty-baselines
- B. Staber, S. Da Veiga, "Benchmarking Bayesian neural networks and evaluation metrics for regression tasks", https://arxiv.org/abs/2206.06779 (2022)
- L. Basora, A. Viens, M. Arias Chao, X. Olive, "A Benchmark on Uncertainty Quantification for Deep Learning Prognostics", https://arxiv.org/abs/2302.04730 (2023)

Additional

Randomized MAP Sampling (RMS)

[Pearce, 2020]

• Consider log-posterior: $-\log P(w|y) = ||y - NN_w(x)||^2 + R(w)$

- Consider regularized training problem $\min \left(\alpha ||y NN_w(x)||^2 + \beta ||w w^*||^2 \right)$
- If one samples w^* from prior $\sim e^{-R(w)}$, the set of deterministic solutions approximately forms the posterior P(w|y)
- It is exact for gaussian priors, linear models: but the authors show that it extends well to larger class, including NNs
- What is missing: proper attribution of uncertainty: is it really RMS or the initialization that drives the good results?