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Motivation and Overview
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• Land-surface model parametric uncertainty remains large
• High model expense à Need for model surrogates for 

sample-intensive studies, 
   such as …

• Global sensitivity analysis (forward UQ)
• Model calibration (inverse UQ)

• Major challenges
• Expensive model evaluation, small ensembles
• High dimensional (spatio-temporal) outputs

Friedlingstein, 2014

• Reduced-dimensional, inexpensive surrogate construction via 
   Karhunen-Loève expansions and Neural Networks (KLNN)
• Surrogate enables global sensitivity analysis and Bayesian model calibration 
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E3SM Land Model (ELM): focus on carbon and energy cycle
Satellite Phenology version 

used for this study       
(close to CLM4.5)

Quantity of Interest: 
Gross primary productivity 

(GPP)…

… resolved in space, …

… and in time.
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Dimensionality Reduction via Karhunen-Loève Expansion
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• Spatio-temporal model output 𝑓(𝜆; 𝑧), where 𝑧 = (𝑥, 𝑦, 𝑡) 

• Output field has large dimensionally 𝑁 = 𝑁!×𝑁"×𝑁#
• Eigenpairs (𝜇$, 𝜙$(𝑧)) are found via eigen-solve

• Analysis reduces to 𝑀 ≪ 𝑁 eigenfeatures 𝜉%, … , 𝜉$
• Under the hood: this is essentially an SVD

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)

Uncertain parameters “Certain” conditions



KL+PC = reduced dimensional spatio-temporal surrogate

6

The goal is to construct a surrogate with respect to uncertain parameters 𝜆, such that 
𝑓(𝜆; 𝑧&) ≈ 𝑓'(𝜆; 𝑧&) for all conditions 𝑧&.

Instead of building surrogate for each individual 𝑧& for 𝑖 = 1,… ,𝑁, 
we construct polynomial chaos (PC) surrogate for 𝜉%, … , 𝜉( where 𝑀 ≪ 𝑁.

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)
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KL+NN = reduced dimensional spatio-temporal surrogate

7

The goal is to construct a surrogate with respect to uncertain parameters 𝜆, such that 
𝑓(𝜆; 𝑧&) ≈ 𝑓'(𝜆; 𝑧&) for all conditions 𝑧&.

Instead of building surrogate for each individual 𝑧& for 𝑖 = 1,… ,𝑁, 
we construct neural network (NN) surrogate for 𝜉%, … , 𝜉( where 𝑀 ≪ 𝑁.

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)
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PC vs NN comparison
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Polynomial Chaos

Neural Network

Simple regression, 
easy to train

More flexible, 
highly customizable

GSA and variance decomposition,
More interpretable

Multiple outputs at once,
More accurate (in theory)



Several case studies 
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                     Time
  Space      

𝐍𝐭 =	180 Months

(full 15 years)

𝐍𝐭 = 12 Months
(average out
interannual)

𝐍𝐭 = 4 Seasons
(average out 

within seasons)

𝐍𝐭 = 1
 (global 

time-average)

FLUXNET sites
𝐍𝐱 = 96 

(or group by PFTs)
F180 F12 F4 F1

Global 144x96
𝐍𝐱 ≅ 4000 

vegetated cells
(or regional zoom) 

G180 G12 G4 G1
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Dimensionality reduction via KL

Per-site dimensionality reduction Per-PFT dimensionality reduction
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KL+NN a single training sample approximation
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Instead of 96x180=17280 surrogates, we build 
a single NN surrogate in the reduced, 8-dimensional latent space

KL+NN surrogate performance



PC vs NN comparison
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96 temporal surrogates 
with each 180 outputs

Single spatio-temporal 
surrogate 

with 96x180 outputs



Sensitivity at 96 FLUXNET sites:
RuBisCO leaf fraction is the most impactful parameter
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Dimensionality reduction from 4000 cells x 4 seasons = 16000 to 11-dimensional latent space

ELM Model Samples KLNN Surrogate Samples



fLNR sensitivity across the globe
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Surrogate-enabled Bayesian calibration
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Reference Data
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FLUXCOM:  A gridded GPP benchmark
upscaled from FLUXNET network
using meteorology, remote sensing

https://www.fluxcom.org/
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Bayesian Likelihood is constructed in the reduced space
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𝑝(𝜆|𝑔) ∝ 𝑝(𝑔|𝜆)𝑝(𝜆)Bayes’ formula

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!%%(𝜆) 𝜇!𝜙!(𝑧)

Project observed data to the KL eigenspace:

𝑔(𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜂! 𝜇!𝜙!(𝑧)

KLNN surrogate:

𝐿&(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
!"#

$ (𝜂! − 𝜉!%%(𝜆))'

2𝜎'Reduced likelihood :

𝐿&(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
("#

% (𝑔(𝑧() − 𝑓(𝜆; 𝑧())'

2𝜎('Pointwise likelihood (naïve) :

Eigenfeatures 𝜉!’s are uncorrelated, zero-mean, unit variance, 
hence iid gaussian likelihood is a much better assumption in the reduced space.
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Latent space distance is well-correlated with the physical 
distance between model and data

US-Ha1

US-GLE



Surrogate-enabled 
calibration workflow
incorporates both 

forward and inverse 
UQ tasks
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RuBisCO leaf fraction (fLNR) is 
the most constrained parameter 

Bayesian calibration enabled by KLNN surrogate
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Time evolution
of GPP at select 
FLUXNET sites
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Calibration brings model prediction closer to reference data

Site-specific parameters
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Summary
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• Karhunen-Loève (KL) decomposition reduces the spatio-temporal output 
dimensionality, taking advantage of correlations over space and time.

• Neural network (NN) surrogate in the reduced eigenspace leads to a 
spatio-temporal KLNN surrogate that is a small fraction of ELM cost.

• KLNN surrogate enables sampling based global sensitivity analysis and 
Bayesian calibration performed in the eigenspace.

Ongoing work: 
• Potential PFT-dependent reparameterization to improve model’s ability 
   to match reference data.
• Calibration with embedded model discrepancy to avoid overfitting.
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Additional Material



KL truncation relies on variance retention
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𝑉𝑎𝑟 𝑓 𝑧 = ∑
!"#

$
𝜇!𝜙2!(𝑧)

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)

𝑉𝑎𝑟 𝑓 = ∑
!"#

$
𝜇!

𝑀	 = 	argmin𝑀′	

∑
!"#

$#

𝜇!

∑
!"#

E
𝜇!

> 0.99



KL is essentially a Singular Value Decomposition
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𝑓 𝜆𝑘; 𝑧𝑖 − 𝑓(𝑧𝑖) ≈ ∑
!"#

$
𝜉!(𝜆𝑘) 𝜇!𝜙!(𝑧𝑖)

𝐹𝑘𝑖 = ∑
!"#

	 $
𝑈𝑘𝑚𝛴𝑚𝑚𝑉𝑖𝑚

KL

SVD 𝐹 =
	
𝑈	𝛴	𝑉𝑇

Karhunen-Loève expansion 
-–  is centralized (first subtract the mean)
-–  often comes with the continuous form
-–  has random variable interpretation for the latent features (aka left singular vectors) 𝜉$ 



Polynomial Chaos intro 
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• Our traditional tool for uncertainty representation and propagation
• Random variables represented as polynomial expansion of standard random variables, 

such as gaussian or uniform 𝜉 = ∑
F"#

G
𝑐𝑘 𝜓F(𝜂)

• Convenient for uncertainty propagation

𝑓(𝜉) = ∑
F"H

G
𝑓𝑘 𝜓F(𝜂)

• Moment estimation

• Global Sensitivity Analysis (a.k.a. Sobol indices or variance-based decomposition)
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Methodological evaluation at 96 FLUXNET sites
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ID PFT Name Count
1 Boreal evergreen needleleaf tree 22
2 Temperate evergreen needleleaf tree 11
3 Boreal deciduous needleleaf tree 0
4 Tropical evergreen broadleaf tree 5
5 Temperate evergreen broadleaf tree 5
6 Tropical deciduous broadleaf tree 1
7 Temperate deciduous broadleaf tree 20
8 Boreal deciduous broadleaf tree 1
9 Broadleaf evergreen shrub 0
10 Temperate deciduous broadleaf shrub 3
11 Boreal deciduous broadleaf shrub 1
12 C3 arctic grass 4
13 C3 non-arctic grass 16
14 C4 grass 1
-1 Mixed 6



mbbopt sensitivity across the globe
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Bayesian Likelihood in the reduced space TBD
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𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!%%(𝜆) 𝜇!𝜙!(𝑧)

Project observed data to the KL eigenspace:

𝑔(𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜂! 𝜇!𝜙!(𝑧)

KLNN surrogate:

𝐿!(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
"#$

% (𝜂" − 𝜉"&&(𝜆))'

2𝜎'

𝐿!(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
"#$

% (𝑔(𝑧") − 𝑓(𝜆; 𝑧"))&

2𝜎"&

Pointwise likelihood (old) :

𝑔(𝑧$) = 𝑓(𝜆; 𝑧$) + 𝜎$𝜖$

𝜂% = 𝜉%&&(𝜆) + 𝜎𝜖
˜
%

𝑔(𝑧$) = 𝑓(𝜆; 𝑧$) + ∑
%()

*
𝜖
˜
% 𝜇%𝜙%(𝑧$)

Data model (old) :

Data model (new) :

i.i.d. Normal

MVN (physics-based)
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Calibration brings model prediction closer to reference data

Common parameters for all sites
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Local (site-specific) fLNR posterior PDFs
Grouped by PFTs
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Fixed global fLNR parameter Local fLNR parameter

Two calibration regimes
One global surrogate One surrogate per grid cell
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Localized calibration works slightly better
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Correlate PFT fractions globally with best fLNR values

PFT Fractions for all PFTs
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Correlate PFT fractions globally with best fLNR values


