Reduced-Dimensional Neural Network Surrogate Construction for the E3SM Land Model

Khachik Sargsyan (SNL), Daniel Ricciuto (ORNL)

SIAM UQ Trieste, Italy March 1, 2024

Motivation and Overview

- Land-surface model parametric uncertainty remains large
- High model expense → Need for model surrogates for sample-intensive studies,

such as ...

- Global sensitivity analysis (forward UQ)
- Model calibration (inverse UQ)
- Major challenges
 - Expensive model evaluation, small ensembles
 - High dimensional (spatio-temporal) outputs
- Reduced-dimensional, inexpensive surrogate construction via Karhunen-Loève expansions and Neural Networks (KLNN)
- Surrogate enables global sensitivity analysis and Bayesian model calibration

E3SM Land Model (ELM): focus on carbon and energy cycle

Model Ensemble (275 samples)

Perturbed Parameters

Parameter	Description	Min	Max
flnr	Fraction of leaf in in RuBisCO	0	0.25
mbbopt	Stomatal slope (Ball-Berry)	2	13
bbbopt	Stomatal intercept (Ball-Berry)	1000	40000
roota_par	Rooting depth distribution	1	10
vcmaxha	Activation energy for Vcmax	50000	90000
vcmaxse	Engropy for Vcmax	640	700
jmaxha	Activation energy for jmax	50000	90000
dayl_scaling	Day length factor	0	2.5
dleaf	Characteristic leaf dimension	0.01	0.1
xl	Leaf/stem orientation index	-0.6	0.8

60°N 30°N 30°N 30°S 60°S

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E 180°

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 GPP Mean

Dimensionality Reduction via Karhunen-Loève Expansion

 $f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m(\lambda) \sqrt{\mu_m} \phi_m(z)$

Uncertain parameters "Certain" conditions

- Spatio-temporal model output $f(\lambda; z)$, where z = (x, y, t)
- Output field has large dimensionally $N = N_x \times N_y \times N_t$
- Eigenpairs $(\mu_m, \phi_m(z))$ are found via eigen-solve
- Analysis reduces to $M \ll N$ eigenfeatures ξ_1, \dots, ξ_m
- Under the hood: this is essentially an SVD

KL+PC = reduced dimensional spatio-temporal surrogate

The goal is to construct a surrogate with respect to uncertain parameters λ , such that $f(\lambda; z_i) \approx f_s(\lambda; z_i)$ for all conditions z_i .

Instead of building surrogate for each individual z_i for i = 1, ..., N, we construct polynomial chaos (PC) surrogate for $\xi_1, ..., \xi_M$ where $M \ll N$.

$$f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m(\lambda) \sqrt{\mu_m} \phi_m(z)$$

KL+NN = reduced dimensional spatio-temporal surrogate

The goal is to construct a surrogate with respect to uncertain parameters λ , such that $f(\lambda; z_i) \approx f_s(\lambda; z_i)$ for all conditions z_i .

Instead of building surrogate for each individual z_i for i = 1, ..., N, we construct neural network (NN) surrogate for $\xi_1, ..., \xi_M$ where $M \ll N$.

PC vs NN comparison

Polynomial Chaos	Simple regression, easy to train	GSA and variance decomposition, More interpretable
Neural Network	More flexible, highly customizable	Multiple outputs at once, More accurate (in theory)

Several case studies

Time Space	N _t = 180 Months (full 15 years)	N _t = 12 Months (average out interannual)	N _t = 4 Seasons (average out within seasons)	N _t = 1 (global time-average)
FLUXNET sites $N_x = 96$ (or group by PFTs)	F180	F12	F4	F1
Global 144x96 $N_x \cong 4000$ vegetated cells (or regional zoom)	G180	G12	G4	G1

Dimensionality reduction via KL

Per-site dimensionality reduction

Per-PFT dimensionality reduction

KL+NN a single training sample approximation

KL+NN surrogate performance

Instead of 96x180=**17280** surrogates, we build a single NN surrogate in the reduced, **8**-dimensional latent space

PC vs NN comparison

96 temporal surrogates with each 180 outputs

Single spatio-temporal surrogate with 96x180 outputs

Sensitivity at 96 FLUXNET sites: RuBisCO leaf fraction is the most impactful parameter

Dimensionality reduction from 4000 cells x 4 seasons = **16000** to **11**-dimensional latent space

ELM Model Samples

KLNN Surrogate Samples

fLNR sensitivity across the globe

Surrogate-enabled Bayesian calibration

Reference Data

FLUXCOM: A gridded GPP benchmark upscaled from FLUXNET network using meteorology, remote sensing

https://www.fluxcom.org/

Bayes' formula $p(\lambda | g) \propto p(g | \lambda) p(\lambda)$

ergy Exascale System Model

Bayesian Likelihood is constructed in the reduced space

Bayes' formula $p(\lambda|g) \propto p(g|\lambda)p(\lambda)$

KLNN surrogate: $f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m^{NN}(\lambda) \sqrt{\mu_m} \phi_m(z)$ Project observed data to the KL eigenspace:

$$g(z) \approx \overline{f}(z) + \sum_{m=1}^{M} \eta_m \sqrt{\mu_m} \phi_m(z)$$

Pointwise likelihood (naïve) :

$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{i=1}^N \frac{(g(z_i) - f(\lambda; z_i))^2}{2\sigma_i^2}\right)$$

Reduced likelihood :

$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{m=1}^M \frac{(\eta_m - \xi_m^{NN}(\lambda))^2}{2\sigma^2}\right)$$

Eigenfeatures ξ_m 's are uncorrelated, zero-mean, unit variance, hence iid gaussian likelihood is a much better assumption in the reduced space.

Latent space distance is well-correlated with the physical distance between model and data

21

Surrogate-enabled calibration workflow incorporates both forward and inverse UQ tasks

Bayesian calibration enabled by KLNN surrogate

U.S. DEPARTMENT OF

US-MOz 17.5 Model Prior Fluxnet data Model Posterior 15.0 12.5 10.0 GPP 7.5 5.0 2.5 0.0 US-Ha1 17.5 --- Fluxnet data Model Prior Model Posterior 15.0 12.5 dд ^{10.0)} 7.5 5.0 2.5 0.0 <005 2005 J <0002 2000 2003 2000 \$008 5015 <00> 5010 501 2013 \$014

2007

2004

Time evolution of GPP at select **FLUXNET** sites

Calibration brings model prediction closer to reference data

Site-specific parameters

Winter

Nominal parameter (prior)

DJF 60°N 30°N 0° 30°5 60°5 120°W 60°W 0° 60°E 120°E 0.00 1.53 3.06 4.59 6.12 7.65 9.18 10.71 12.24 13.77 GPP Nom.

Max a posteriori (MAP)

Reference data

26

Summary

- Karhunen-Loève (KL) decomposition reduces the spatio-temporal output dimensionality, taking advantage of correlations over space and time.
- Neural network (NN) surrogate in the reduced eigenspace leads to a spatio-temporal KLNN surrogate that is a small fraction of ELM cost.
- KLNN surrogate enables sampling based global sensitivity analysis and Bayesian calibration performed in the eigenspace.

Ongoing work:

- Potential PFT-dependent reparameterization to improve model's ability to match reference data.
- Calibration with embedded model discrepancy to avoid overfitting.

Additional Material

KL truncation relies on variance retention

$$f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m(\lambda) \sqrt{\mu_m} \phi_m(z)$$

$$Var[f(z)] = \sum_{m=1}^{M} \mu_m \phi^2_m(z)$$

$$M = \operatorname{argmin}_{M'} \frac{\sum_{\substack{m=1\\ \infty}}^{M'} \mu_m}{\sum_{\substack{m=1\\ m=1}}^{\infty} \mu_m} > 0.99$$

$$Var[f] = \sum_{m=1}^{M} \mu_m$$

KL is essentially a Singular Value Decomposition

$$\begin{array}{ll} \mathsf{KL} & f(\lambda^k; zi) - \overline{f}(zi) \approx \sum\limits_{m=1}^M \xi_m(\lambda^k) \sqrt{\mu_m} \phi_m(zi) \\ & F_{ki} = \sum\limits_{m=1}^M U_{km} \Sigma_{mm} V_{im} \\ & \mathsf{SVD} & F = U \, \Sigma \, V^T \end{array}$$

Karhunen-Loève expansion

- -- is centralized (first subtract the mean)
- -- often comes with the continuous form
- -- has random variable interpretation for the latent features (aka left singular vectors) ξ_m

Polynomial Chaos intro

- Our traditional tool for uncertainty representation and propagation
- Random variables represented as polynomial expansion of standard random variables, such as gaussian or uniform $\xi = \sum_{k=1}^{K} c_k \psi_k(\eta)$
- Convenient for uncertainty propagation

$$f(\xi) = \sum_{k=0}^{K} f_k \psi_k(\eta)$$

- Moment estimation
- Global Sensitivity Analysis (a.k.a. Sobol indices or variance-based decomposition)

Methodological evaluation at 96 FLUXNET sites

ID	PFT Name	Count
1	Boreal evergreen needleleaf tree	22
2	Temperate evergreen needleleaf tree	11
3	Boreal deciduous needleleaf tree	0
4	Tropical evergreen broadleaf tree	5
5	Temperate evergreen broadleaf tree	5
6	Tropical deciduous broadleaf tree	1
7	Temperate deciduous broadleaf tree	20
8	Boreal deciduous broadleaf tree	1
9	Broadleaf evergreen shrub	0
10	Temperate deciduous broadleaf shrub	3
11	Boreal deciduous broadleaf shrub	1
12	C3 arctic grass	4
13	C3 non-arctic grass	16
14	C4 grass	1
-1	Mixed	6

mbbopt sensitivity across the globe

Bayesian Likelihood in the reduced space TBD

Calibration brings model prediction closer to reference data

Common parameters for all sites

Local (site-specific) fLNR posterior PDFs

Grouped by PFTs

Two calibration regimes

One global surrogate

Fixed global fLNR parameter

One surrogate per grid cell Local fLNR parameter

Localized calibration works slightly better

Correlate PFT fractions globally with best fLNR values

PFT Fractions for all PFTs

Correlate PFT fractions globally with best fLNR values

