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Motivation and Overview
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• Need for model surrogates for sample-intensive studies, 
   such as …

• Global sensitivity analysis (forward UQ)
• Model calibration (inverse UQ)

• Major challenges
• Expensive model evaluation, small ensembles
• High dimensional (spatio-temporal) outputs

Friedlingstein, 2014

• Reduced-dimensional, inexpensive surrogate construction via 
   Karhunen-Loève expansions and Neural Networks (KLNN)
• Surrogate enables global sensitivity analysis and Bayesian model calibration 
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E3SM Land Model (ELM): focus on carbon and energy cycle

Quantity of Interest: 
Gross primary 

productivity (GPP)…

… resolved in space, …

… and in time.
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Dimensionality Reduction via Karhunen-Loève Expansion
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• Spatio-temporal model output 𝑓(𝜆; 𝑧), where 𝑧 = (𝑥, 𝑦, 𝑡) 

• Output field has large dimensionally 𝑁 = 𝑁!×𝑁"×𝑁#
• Eigenpairs (𝜇$, 𝜙$(𝑧)) are found via eigen-solve

• Analysis reduces to 𝑀 ≪ 𝑁 eigenfeatures 𝜉%, … , 𝜉$
• Under the hood: this is essentially an SVD

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)

Uncertain parameters “Certain” conditions



KL+NN = reduced dimensional spatio-temporal surrogate
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The goal is to construct a surrogate with respect to uncertain parameters 𝜆, such that 
𝑓(𝜆; 𝑧&) ≈ 𝑓'(𝜆; 𝑧&) for all conditions 𝑧&.

Instead of building surrogate for each individual 𝑧& for 𝑖 = 1,… ,𝑁, 
we construct neural network (NN) surrogate for 𝜉%, … , 𝜉( where 𝑀 ≪ 𝑁.

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!(𝜆) 𝜇!𝜙!(𝑧)
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𝜆!, … , 𝜆" 𝜉!, … , 𝜉#



Reference Data
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FLUXCOM:  A gridded GPP benchmark
upscaled from FLUXNET network
using meteorology, remote sensing

https://www.fluxcom.org/
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Bayesian Likelihood is constructed in the reduced space
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𝑝(𝜆|𝑔) ∝ 𝑝(𝑔|𝜆)𝑝(𝜆)Bayes’ formula

𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!%%(𝜆) 𝜇!𝜙!(𝑧)

Project observed data to the KL eigenspace:

𝑔(𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜂! 𝜇!𝜙!(𝑧)

KLNN surrogate:

𝐿&(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
!"#

$ (𝜂! − 𝜉!%%(𝜆))'

2𝜎'Reduced likelihood :

𝐿&(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
("#

% (𝑔(𝑧() − 𝑓(𝜆; 𝑧())'

2𝜎('Pointwise likelihood (naïve) :

Eigenfeatures 𝜉!’s are uncorrelated, zero-mean, unit variance, 
hence iid gaussian likelihood is a much better assumption in the reduced space.



Surrogate-enabled 
calibration workflow
incorporates both 

forward and inverse 
UQ tasks
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Sensitivity at 96 FLUXNET sites:
RuBisCO leaf fraction as the most impactful parameter
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Instead of 96x180=17280 surrogates, we build 
a single NN surrogate in the reduced, 8-dimensional latent space
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RuBisCO leaf fraction (flnr) is the 
most constrained parameter 

Bayesian MCMC calibration enabled by KLNN surrogate
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Time evolution
of GPP at select 
FLUXNET sites
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Calibration brings model prediction closer to reference data



16

Dimensionality reduction from 4000 cells x 4 seasons = 16000 to 11-dimensional latent space

ELM Model Samples KLNN Surrogate Samples



flnr sensitivity across the globe
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Fixed global flnr parameter Local flnr parameter

Two calibration regimes Ongoing work: PFT-dependent reparameterization 
to improve model’s ability to match reference data.



Summary
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• Karhunen-Loève (KL) decomposition reduces the spatio-temporal output 
dimensionality, taking advantage of correlations over space and time.

• Neural network (NN) surrogate in the reduced eigenspace leads to a 
spatio-temporal KLNN surrogate that is a small fraction of ELM cost.

• KLNN surrogate enables sampling based global sensitivity analysis and 
Bayesian calibration performed in the eigenspace.

• Several orders of magnitude reduction of output dimensionality, and of 
the simulation cost with ~5% accuracy impact.

• Ongoing work: PFT-dependent reparameterization to improve model’s 
ability to match reference data.
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Additional Material



Bayesian Likelihood in the reduced space
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𝑓(𝜆; 𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜉!%%(𝜆) 𝜇!𝜙!(𝑧)

Project observed data to the KL eigenspace:

𝑔(𝑧) ≈ 𝑓(𝑧) + ∑
!"#

$
𝜂! 𝜇!𝜙!(𝑧)

KLNN surrogate:

𝐿!(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
"#$

% (𝜂" − 𝜉"&&(𝜆))'

2𝜎'

𝐿!(𝜆) ≡ 𝑝(𝑔|𝜆) ∝ exp − ∑
"#$

% (𝑔(𝑧") − 𝑓(𝜆; 𝑧"))&

2𝜎"&

Pointwise likelihood (old) :

𝑔(𝑧!) = 𝑓(𝜆; 𝑧!) + 𝜎!𝜖!

𝜂" = 𝜉"##(𝜆) + 𝜎𝜖
˜
"

𝑔(𝑧!) = 𝑓(𝜆; 𝑧!) + ∑
"%&

'
𝜖
˜
" 𝜇"𝜙"(𝑧!)

Data model (old) :

Data model (new) :

i.i.d. Normal

MVN (physics-based)
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