Reduced-Dimensional Neural Network Surrogate Construction and Calibration of the E3SM Land Model

Khachik Sargsyan (SNL), Daniel Ricciuto (ORNL)

AGU Fall Meeting San Francisco Dec. 11, 2023

Motivation and Overview

- Need for model surrogates for sample-intensive studies, such as ...
 - Global sensitivity analysis (forward UQ)
 - Model calibration (inverse UQ)
- Major challenges
 - Expensive model evaluation, small ensembles
 - High dimensional (spatio-temporal) outputs

- Reduced-dimensional, inexpensive surrogate construction via Karhunen-Loève expansions and Neural Networks (KLNN)
- Surrogate enables global sensitivity analysis and Bayesian model calibration

E3SM Land Model (ELM): focus on carbon and energy cycle

Model Ensemble (275 samples)

Perturbed Parameters

Parameter	Description	Min	Max
flnr	Fraction of leaf in in RuBisCO	0	0.25
mbbopt	Stomatal slope (Ball-Berry)	2	13
bbbopt	Stomatal intercept (Ball-Berry)	1000	40000
roota_par	Rooting depth distribution	1	10
vcmaxha	Activation energy for Vcmax	50000	90000
vcmaxse	Engropy for Vcmax	640	700
jmaxha	Activation energy for jmax	50000	90000
dayl_scaling	Day length factor	0	2.5
dleaf	Characteristic leaf dimension	0.01	0.1
xl	Leaf/stem orientation index	-0.6	0.8

60°N 30°N 30°N 30°S 60°S

150°W 120°W 90°W 60°W 30°W 0° 30°E 60°E 90°E 120°E 150°E 180°

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 GPP Mean

Dimensionality Reduction via Karhunen-Loève Expansion

 $f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m(\lambda) \sqrt{\mu_m} \phi_m(z)$

Uncertain parameters "Certain" conditions

- Spatio-temporal model output $f(\lambda; z)$, where z = (x, y, t)
- Output field has large dimensionally $N = N_x \times N_y \times N_t$
- Eigenpairs $(\mu_m, \phi_m(z))$ are found via eigen-solve
- Analysis reduces to $M \ll N$ eigenfeatures ξ_1, \dots, ξ_m
- Under the hood: this is essentially an SVD

KL+NN = reduced dimensional spatio-temporal surrogate

The goal is to construct a surrogate with respect to uncertain parameters λ , such that $f(\lambda; z_i) \approx f_s(\lambda; z_i)$ for all conditions z_i .

Instead of building surrogate for each individual z_i for i = 1, ..., N, we construct neural network (NN) surrogate for $\xi_1, ..., \xi_M$ where $M \ll N$.

Reference Data

FLUXCOM: A gridded GPP benchmark upscaled from FLUXNET network using meteorology, remote sensing

https://www.fluxcom.org/

Bayes' formula $p(\lambda | g) \propto p(g | \lambda) p(\lambda)$

gy Exascale stem Model

Bayesian Likelihood is constructed in the reduced space

Bayes' formula $p(\lambda|g) \propto p(g|\lambda)p(\lambda)$

KLNN surrogate: $f(\lambda; z) \approx \overline{f}(z) + \sum_{m=1}^{M} \xi_m^{NN}(\lambda) \sqrt{\mu_m} \phi_m(z)$ Project observed data to the KL eigenspace:

$$g(z) \approx \overline{f}(z) + \sum_{m=1}^{M} \eta_m \sqrt{\mu_m} \phi_m(z)$$

Pointwise likelihood (naïve) :

$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{i=1}^N \frac{(g(z_i) - f(\lambda; z_i))^2}{2\sigma_i^2}\right)$$

Reduced likelihood :

$$L_g(\lambda) \equiv p(g|\lambda) \propto \exp\left(-\sum_{m=1}^M \frac{(\eta_m - \xi_m^{NN}(\lambda))^2}{2\sigma^2}\right)$$

Eigenfeatures ξ_m 's are uncorrelated, zero-mean, unit variance, hence iid gaussian likelihood is a much better assumption in the reduced space.

Surrogate-enabled calibration workflow incorporates both forward and inverse UQ tasks

Sensitivity at 96 FLUXNET sites: RuBisCO leaf fraction as the most impactful parameter

Instead of 96x180=**17280** surrogates, we build a single NN surrogate in the reduced, **8**-dimensional latent space

Bayesian MCMC calibration enabled by KLNN surrogate

U.S. DEPARTMENT OF

US-MOz 17.5 Model Prior Fluxnet data Model Posterior 15.0 12.5 10.0 GPP 7.5 5.0 2.5 0.0 US-Ha1 17.5 --- Fluxnet data Model Prior Model Posterior 15.0 12.5 dg 10.0 7.5 5.0 2.5 0.0 <005 2005 J <0002 2000 2003 2000 \$008 5015 2007 2004 <002 5010 501 2013

Time evolution of GPP at select **FLUXNET** sites

2014

Calibration brings model prediction closer to reference data

Dimensionality reduction from 4000 cells x 4 seasons = **16000** to **11**-dimensional latent space

ELM Model Samples

KLNN Surrogate Samples

flnr sensitivity across the globe

Winter

Nominal parameter (prior)

DJF 60°N 30°N 0° 30°5 60°5 120°W 60°W 0° 60°E 120°E 0.00 1.53 3.06 4.59 6.12 7.65 9.18 10.71 12.24 13.77 GPP Nom.

Max a posteriori (MAP)

Reference data

18

Two calibration regimes

<u>Ongoing work</u>: PFT-dependent reparameterization to improve model's ability to match reference data.

Fixed global flnr parameter 14 12 10 0.05 0.10 0.20 0.25 0.00 0.15

Local flnr parameter

Summary

- Karhunen-Loève (KL) decomposition reduces the spatio-temporal output dimensionality, taking advantage of correlations over space and time.
- Neural network (NN) surrogate in the reduced eigenspace leads to a spatio-temporal **KLNN** surrogate that is a small fraction of ELM cost.
- KLNN surrogate enables sampling based global sensitivity analysis and Bayesian calibration performed in the eigenspace.
- Several orders of magnitude reduction of output dimensionality, and of the simulation cost with ~5% accuracy impact.
- <u>Ongoing work</u>: PFT-dependent reparameterization to improve model's ability to match reference data.

Additional Material

Bayesian Likelihood in the reduced space

ENERGY 23

ENERGY 24