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A mix and extension of my talks at  
UNCECOMP, FASTMath All Hands, and LDRD review.

Outline

•  UQ for NNs: review and state of the art 
•  Loss landscape perspective, challenges, metrics

•  Weight parametrization in Residual NNs (ResNets) 
•  Reduces generalization gap 
•  Enables easier UQ

•  QUiNN: ongoing work and software plug

•   UQPANN: concept exploratory project between FASTMath and RAPIDS 



Probabilistic NN == Bayesian NN
Ghahramani, “ProbabilisHc Machine Learning and ArHficial Intelligence”. Nature, 2015

“Nearly all approaches to probabilis1c programming are Bayesian since it is hard  
to create other coherent frameworks for automated reasoning about uncertainty” 

• Bayesian NN methods have been around since 90s [MacKay, 1992; Neal, 1996] 
  

• Full Bayesian treatment was infeasible back then….  
• … and s=ll is, generally, not industry-standard by any means.



UQ-for-NN: Bayesian perspective

Training for NN weights reformulated as a Bayesian inference problem 

NegaHve Log-Posterior Training Loss FuncHon≃ a | |y − fw(x) | |2 + b | |w | |2 ≃

✓   Markov chain Monte Carlo (MCMC) sampling; Hamiltonian MC [Levy, 2018] 
๏   Tuning is an art: essenHally infeasible outside academic examples

exp (−
| |w | |2

2λ2 )



UQ-for-NN: variational methods
•  Bayes by Backprop [Blundell, 2015] 

•  has become mainstream in ML literature 
•  also called BNN 

•  Mean-field VI (i.e. i.i.d. normal varia=onal class) 
•  Reparameteriza=on trick 
•  Gaussian mixture prior: wide and narrow 
•  Varia=onal st.dev.  

•  SVI, ADVI, BBVI, BBBVI, CCVI, CATVI, ….  

σ = ln(1 + eρ)

๏ Typically underes=mates predic=ve uncertainty
๏ Restricted to varia=onal class 
๏ Hard to train



UQ-for-NN: approximate methods

•  Probabilis)c backprop, or PBP [Hernandez-Lobato, 2015]  

•  Layer-to-layer updates from  to  
•  Deriving back propaga=on formulas for this update 

•   updates similar to PC propaga=on (first order HG-PC) 

𝒩(μ, σ2) 𝒩(μnew, σ2
new)

μ, σ2 → μnew, σ2
new

๏ Did not really liU off
๏ Original implementa=on in Theano:)

•  Laplace methods: [RiBer, 2018] 
✓ Relies on Gaussian apprx near maximum;  
✓ Can be generalized to GMM 
๏ Good only locally 
๏ Hessian computa=on challenging
๏ Fails to explore the full posterior



UQ-for-NN: other (more empirical) methods
•  Ensembling methods: work surprisingly well! 
✓Deep Ensembles [Lakshminarayanan, 2017];  
✓ InterpreHng ensembles from Bayesian perspecHve [Garipov, 2018; Fort, 2019] 
✓Randomized MAP Sampling [Pearce, 2020] 
✓MC-Dropout [Gal, 2015] 
✓ StochasHc Weight Averaging – Gaussian (SWAG) [Maddox, 2019]:shipped w PyTorch1.6 
✓Delta-UQ [Anirudh, 2021], 
๏ Liale theoreHcal backing 
๏ Too expensive, albeit parallelizable 

•  Direct learning of predic6ve RV 
✓Distance-based methods [Postels, 2022], 
✓DEUP [Lahlou, 2023] 
✓AVUC [Krishnan, 2020]. 

• Other 
✓ InformaHon-boaleneck UQ [Guo, 2023], 
✓Conformal UQ [Hu, 2022], 
✓Bayesian Last Layer [Watson, 2021]. 



Randomized MAP Sampling (RMS)
[Pearce, 2020]

•  Consider regularized training problem min (α | |y − NNw(x) | |2 + β | |w − w* | |2 )

−log P(w |y) = | |y − NNw(x) | |2 + R(w)•  Consider log-posterior:

•  If one samples , the set of determinisHc soluHons 
approximately  forms the posterior

w* from prior ∼ e−R(w)

P(w |y)

• It is exact for gaussian priors, linear models:  
but the authors show that it extends well to larger class, including NNs

• What is missing: proper aaribuHon of uncertainty: is it really 
RMS or the iniHalizaHon that drives the good results? 



Challenges of UQ-for-NN

✓  Complicated posterior distribuHon (loss surface):  
•  invariances and symmetries: permuHng some weights leads to the same loss, 
•  mulHmodality: mulHple local minima in the weight space, 
•  “ridges”: low-d manifolds with same or similar loss. 

✓  Prior on weights hard to elicit/interpret/defend 
•  what does a uniform/gaussian prior on weight matrix elements mean? 
•  perhaps a prior is needed in the ‘matrix’-space, or… 
•  driven by outputs, or physics-constraints. 

✓  Large number of weights:  
•  scales linearly with depth and quadraHcally with width, 
•  hard to visualize the high-d surface.



How to measure if uncertainty estimate is correct?

✓ Benchmarking efforts are picking up: 
• UCI Dataset, both regression and classifica=on 
• Recent work specific to Bayesian NN  
[Yao, 2019; NavraFl, 2021; Nado, 2021; Staber, 2022; Basora, 2023]

✓ S=ll a lot of eyeballing and 1d fit examples,  
✓ Striving to match a GP

Uncertainty-Accuracy Plot Posterior predic=ve with no data —> Prior predic=ve



UQPANN: visualizing and quantifying uncertainties in physics-aware NNs

Accurate UQ for Neural Networks (NNs) 
hinges on the loss surface’s behavior

Physics-driven regularization  
will improve loss surface and  

enable more accurate and efficient UQ

Benjamin Erichson (LBL),      Khachik Sargsyan (SNL)
FASTMath+RAPIDS Exploratory 1yr Project: FY24, $250k



Physics-driven regularization should help
•  We hypothesize that incorporaHng prior knowledge of physics will regularize the 
loss/log-posterior landscapes, making them more amenable to sampling and analysis. 

•  This means both: 
•  soR regularizaHon (like PINN) and  
•  hard architectural changes  

•  physics-driven rewiring (invariance, symmetries, posiHvity, feature extracHon),  
•  numerical convenience (ResNet/NODE, weight reparameterizaHon, layer/batch 
normalizaHon). 

•  This regularizaHon process should enable the derivaHon of well-calibrated, 
generalizable, and scalable predicHve uncertainHes.  



Our Plan: Visualization + (Physics) + Laplace
•  VisualizaHon of loss surface is key to help understand and characterize NN 
performance [Li, 2018; Garipov, 2018; Fort, 2019; Yang, 2021], 

•  We will develop special slicing schemes, anchored at points of interest, such as 
local minima and saddle points found with convenHonal SGD methods,  

•  We will try to develop metrics of regularity, generalizability and “sample-ability” 
of the loss surface (a.k.a. log-posterior), incl. both local and global features.

•  We will establish a systemaHc approach to categorize and interrogate the loss 
surface and measure the impact of physics-driven regularizaHon on them, 

•  We will leverage the idea of Laplace approximaHon to obtain uncertainty esHmates 
for NNs [RiUer, 2018; Daxberger, 2021], 

•  MoHvated and informed by the loss surface analysis, we will develop scalable 
mixture-of-Laplace approximaHons to model posterior distribuHons of varying shapes. 



Gear switch: ResNet/NODE ideas that helped UQ

[E, 2017; Chen, 2018; RuthoBo, 2018]



ResNet example
ResNets regularize loss landscape compared to MLPs 

See [Lee, 2017] for a more comprehensive study. 

Conven=onal MLP: xn+1 = σ(Wnxn + bn) ResNet: xn+1 = xn + σ(Wnxn + bn)



Weight Parameterization inspired by NODE analogy

dx
dt

= σ(W(t)x + b(t))Neural ODE: 

xn+1 = xn + σ(Wnxn + bn)ResNet:

Parameterize weight matrices with respect to time (aka depth) 

 and train for ’s.W(t; θ) θ



Weight Parameterization as a regularization tool



Weight Parameterization improves generalization



Weight Parameterization improves accuracy



WP ResNet enables UQ
•  Number of parameters in ResNets, as well as MLPs, grows with linearly depth. 
•  Number of parameters  in weight-parameterized ResNets is independent of depth. 
•  We can easily achieve regimes with manageable MCMC dimensionality and  
    posterior PDFs that out-of-box MCMC methods can easily sample. 
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QUiNN: github.com/sandialabs/quinn



QUiNN: github.com/sandialabs/quinn

QUINNBase

MCMC VI Ens

RMSDeep Ens.AMCMC HMC Bayes-by-
Backprop

uqnet = QUINNBase(torch.nn.module)

Laplace BLL Conformal

SWAGPBP

D-UQ



Summary
•  UQ for NN 

• An aaempt to categorize the methods 
• Most methods rely on loss landscape  

•  New FASTMath/RAPIDS concept project: visualize and study loss landscapes, add physics. 

•  ResNet/ODE: 
• Draw inspiraHon from ODE and infinite depth limit 
• ResNets regularize the learning problem, smoother loss/log-posterior surface 
• Weight parameterizaHon (WP) allows regularizaHon without losing much expressivity 
• Full Bayesian UQ treatment made more feasible with WP ResNets 

•  Implemented in QUiNN: github.com/sandialabs/quinn  modular code as a wrapper to 
categories of methods (MCMC/HMC, VI, Ens)

• Metrics/diagnosHcs of accuracy 
• Major challenges  

http://github.com/sandialabs/quinn
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