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Trustworthy SciML requires  
Uncertainty Quantification (UQ)

Accurate UQ for Neural Networks (NNs) 
hinges on the loss surface’s behavior

Physics-driven regularization  
will improve loss surface and  

enable more accurate and efficient UQ

Main Theses



Probabilistic NN == Bayesian NN
Ghahramani, “ProbabilisJc Machine Learning and ArJficial Intelligence”. Nature, 2015

“Nearly all approaches to probabilis1c programming are Bayesian since it is hard  
to create other coherent frameworks for automated reasoning about uncertainty” 

• Bayesian NN methods have been around since 90s [MacKay, 1992; Neal, 1996] 
  

• Full Bayesian treatment was infeasible back then….  
• … and sJll is, generally, not industry-standard by any means.



UQ-for-NN: Bayesian perspective

Training for NN weights reformulated as a Bayesian inference problem 

NegaJve Log-Posterior Training Loss FuncJon≃ a | |y − fw(x) | |2 + b | |w | |2 ≃

✓   Markov chain Monte Carlo (MCMC) sampling; Hamiltonian MC [Levy, 2018] 
๏   Tuning is an art: essenJally infeasible outside academic examples

exp(−
| |w | |2

2λ2 )



UQ-for-NN: approximate methods

Accurate UQ for Neural Networks (NNs) hinges on the loss surface’s behavior

•  Varia%onal inference: 
✓ Bayes by Backprop [Blundell, 2015] 
✓ ProbabilisJc backprop [Hernandez-Lobato 2015] 
✓ SVI, BBVI, ADVI, ….  
๏ Typically underesJmates predicJve uncertainty
๏ Restricted to variaJonal class

•  Laplace methods: [Daxberger, 2021] 
✓ Relies on Gaussian apprx near maximum;  
✓ Can be generalized to GMM 
๏ Good only locally
๏ Fails to explore the full posterior



UQ-for-NN: other (more empirical) methods

Accurate UQ for Neural Networks (NNs) hinges on the loss surface’s behavior

•  Ensembling methods: work surprisingly well! 
✓Deep Ensembles [Lakshminarayanan, 2017] 
✓Randomized MAP Sampling [Pearce, 2020] 
✓MC-Dropout [Gal, 2015] 
✓ StochasJc Weight Averaging – Gaussian (SWAG) [Maddox, 2019] 
๏ Lidle theoreJcal backing 
๏ Too expensive, albeit parallelizable 
๏ Some recent work interpreJng these from Bayesian perspecJve 

•  Direct learning of predic%ve RV 
✓Delta-UQ [Anirudh, 2021], 
✓Conformal UQ [Hu, 2022], 

✓ InformaJon-bodleneck UQ [Guo, 2023], 
✓Distance-based methods [Postels, 2022].



Challenges of UQ-for-NN

✓  Complicated posterior distribuJon (loss surface):  
•  invariances and symmetries: permuJng some weights leads to the same loss, 
•  mulJmodality: mulJple local minima in the weight space, 
•  “ridges”: low-d manifolds with same or similar loss. 

✓  Prior on weights hard to elicit/interpret/defend 
•  what does a uniform/gaussian prior on weight matrix elements mean? 
•  perhaps a prior is needed in the ‘matrix’-space, or… 
•  driven by outputs, or physics-constraints. 

✓  Large number of weights:  
•  scales linearly with depth and quadraJcally with width, 
•  hard to visualize the high-d surface.



Physics-driven regularization should help
•  We hypothesize that incorporaJng prior knowledge of physics will regularize the 
loss/log-posterior landscapes, making them more amenable to sampling and analysis. 

•  This means both: 
•  soU regularizaJon (like PINN) and  
•  hard architectural changes  

•  physics-driven rewiring (invariance, symmetries, posiJvity, feature extracJon),  
•  numerical convenience (ResNet/NODE, weight reparameterizaJon, layer/batch 
normalizaJon). 

•  This regularizaJon process should enable the derivaJon of well-calibrated, 
generalizable, and scalable predicJve uncertainJes.  



ResNet example
ResNets regularize loss landscape compared to MLPs 

See [Lee, 2017] for a more comprehensive study. 

ConvenJonal MLP: xn+1 = σ(Wnxn + bn) ResNet: xn+1 = xn + σ(Wnxn + bn)



Our Plan

• Task 1: ScienJfic VisualizaJon of Posterior DistribuJons of NNs. We aim to develop scienJfic 
visualizaJon techniques to understand uncertainJes in neural network predicJons, and gain 
insights into the impact of physics-constraints on the shape of posterior distribuJons. 

• Task 2: Mixture of Laplace ApproximaJons for QuanJfying Uncertainty in NNs. We aim to 
develop mixtures of Laplace approximaJons to model posterior distribuJons of varying 
shapes, for compuJng approximate uncertainty esJmates for physics-aware NNs. 



Our Plan: Visualization + (Physics) + Laplace
•  VisualizaJon of loss surface is key to help understand and characterize NN 
performance [Li, 2018; Garipov, 2018; Fort, 2019; Yang, 2021], 

•  We will develop special slicing schemes, anchored at points of interest, such as 
local minima and saddle points found with convenJonal SGD methods,  

•  We will try to develop metrics of regularity, generalizability and “sample-ability” 
of the loss surface (a.k.a. log-posterior), incl. both local and global features.

•  We will establish a systemaJc approach to categorize and interrogate the loss 
surface and measure the impact of physics-driven regularizaJon on them, 

•  We will leverage the idea of Laplace approximaJon to obtain uncertainty esJmates 
for NNs [Daxberger, 2021; Graf, 2021; OY, 2023], 

•  MoJvated and informed by the loss surface analysis, we will develop scalable 
mixture-of-Laplace approximaJons to model posterior distribuJons of varying shapes. 



Summary

Logis%cs: given the short Jme, we plan to hire internally at each lab

•  There is urgent need for principled UQ for NNs in DOE applicaJons 
•  For moderately-sized NNs there is a lot to be done by loss surface analysis 
•  UJlize unique strengths of FASTMath and RAPIDS 

•  QuanJfiable metrics for loss surface / log-posterior by uJlizing anchored slices 
•  Measure the effect of hard and soj physics constraints 
•  Develop scalable UQ algorithms: mixture of Laplace 

Impact: methodological development of novel UQ-for-NN approximate Bayesian 
algorithms, but also pracJcal impact on a range of large-scale DOE applicaJons. 
This should posiJon us well for further SciML funding.


