
Sandia National Laboratories is a 
multimission laboratory managed and 
operated by National Technology and 

Engineering Solutions of Sandia LLC, a wholly 
owned subsidiary of Honeywell International 

Inc. for the U.S. Department of Energy’s 
National Nuclear Security Administration 

under contract DE-NA0003525.

Quantifying Uncertainties in 
Residual Neural Networks and 
Neural ODEs

Khachik Sargsyan (Sandia National Laboratories, CA, USA)

Sandia-CA    : Joshua Hudson, Oscar Diaz-Ibarra, Habib Najm
Pasteur Labs/Stanford U.  : Marta D’Elia
Emory Univ. : Lars Ruthotto, Haley Rosso

UNCECOMP23 , Athens , Greece

June 12, 2023



Road to Trustworthy SciML

• Uncertainty quantification for NN 
• state of the art and challenges

• How Residual NNs (ResNets) make 
UQ-for-NNs more tractable
• weight-parameterization inspired 

by Neural ODE analogy

Probabilistic NN

Confidence assessment

Neural ODEs / ResNets

Generalization 



Probabilistic NN aka Bayesian NN

• Bayesian NN methods have been around since 90s [MacKay, 1992; Neal, 1996]

• Full Bayesian treatment was infeasible back then….

• … and still is, generally, not industry-standard by any means

• Ghahramani, “Probabilistic Machine Learning and Artificial Intelligence”. Nature, 2015

• “Nearly all approaches to probabilistic programming are Bayesian since it is hard to 

create other coherent frameworks for automated reasoning about uncertainty”



UQ-for-NN: state of the art

• True Bayesian: Sampling methods with true posterior distribution

ü Markov chain Monte Carlo (MCMC) sampling of posterior; Hamiltonian MC [Levy, 2018] 
qTuning is an art: essentially infeasible outside academic examples
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UQ-for-NN: state of the art, cont-d

• Approximate Bayesian:

üVariational inference, many flavors; 
Bayes by Backprop [Blundell, 2015] 
Probabilistic backprop [Hernandez-Lobato 2015]
SVI, BBVI, ADVI, …. 

qTypically underestimates predictive uncertainty
qRestricted to variational class

üLaplace approximation [Daxberger, 2021]
qGood only locally, fails to explore the full posterior



UQ-for-NN: state of the art, cont-d

• Ensembling methods: work surprisingly well!
üDeep Ensembles [Lakshminarayanan, 2017]
üRandomized MAP Sampling [Pearce, 2020]
üMC-Dropout [Gal, 2015]
üStochastic Weight Averaging – Gaussian (SWAG) [Maddox, 2019]
qLittle theoretical backing
qToo expensive, albeit parallelizable
qLots of recent work interpreting these from Bayesian persepective

• Direct learning of predictive RV
üDelta-UQ [Anirudh, 2021]
üConformal UQ [Hu, 2022]
ü Information-bottleneck UQ [Guo, 2023]
ü….



Bayesian UQ-for-NN: showstoppers

• Complicated posterior distribution (loss surface): 
invariances, multimodality, ‘ridges’

• Large number of weights: 
scales linearly with depth and quadratically with width

• Prior on weights hard to elicit/interpret/defend

work with Weight-Parameterized ResNets to enable/facilitate UQ

Main message of the talk: 
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• Neural ODEs have been around a while (few papers in 90's), but revived in ML community recently

ü [Chen, Duvenaud, 2018+]: clever trick with adjoints

ü [Ruthotto et al, 2018+]: more fundamental, discovery

ü [Weinan E, 2017]: dynamical system context; training formulated as a control problem

• Many extensions followed

ü SDE context [Liu et al, 2019; Tzen et al, 2019]

ü PDE context [Ruthotto et al, 2018; Long et al, 2018]

ü Inspires new NN architectures [Lu et al, 2018]

ü Fractional/nonlocal DNN [Antil, 2020; Pang, 2020; D’Elia, 2020]

• Plenty of challenges: active area of research, mix of optimism and skepticism in literature

Neural ODEs: state of the art

Focus today: discrete counterpart of NODEs, ResNets, small change from MLPs, but huge gains. 



𝒙 = 𝒙𝟎 𝒚 = 𝒙𝑻
Input Output

ResNet and Neural ODE in a regression setting 
(supervised ML)

ResNet (discrete) Neural ODE (continuous)

𝒙𝟏 = 𝒙 + 𝜶𝟎𝝈(𝑾𝟎𝒙𝟎 + 𝒃𝟎)
.

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)
𝐴

𝒚 = 𝒙𝑳'𝟏 + 𝜶𝑳'𝟏𝝈(𝑾𝑳'𝟏𝒙𝑳'𝟏 + 𝒃𝑳'𝟏)

𝑑𝒙
𝑑𝑡 = 𝝈(𝑾 𝑡 𝒙 + 𝒃 𝑡 )

𝒙 0 = 𝒙 𝒙(𝑇) = 𝒚



ResNets regularize loss landscape compared to MLPs

Multilayer Perceptron (learning the layer) ResNets (learning the layer diff.)

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)ResNet:𝒙𝒏%𝟏 = 𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)MLP NN:

See [Lee, 2017] for a more comprehensive study



𝒙 = 𝒙𝟎 𝒚 = 𝒙𝑻
Input Output

t=0 t=T

𝑾𝟎 𝑾𝟏

Weight parameterization inspired by ODEs

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)ResNet:

𝑑𝒙
𝑑𝑡 = 𝝈(𝑾 𝑡 𝒙 + 𝒃 𝑡 )Neural ODE:

Parameterize weight matrices with respect to time (aka depth)

𝑾(𝑡; 𝜽) and train for 𝜽’s



𝒙 = 𝒙𝟎 𝒚 = 𝒙𝑻
Input Output

t=0 t=T

𝑾𝟎 𝑾𝟏

Weight parameterization as a regularization tool

Training for weight matrices 𝑾𝟎,𝑾𝟏, …

NonPar 𝑾(𝑡; 𝜽)
= 𝑾𝒕𝑳/𝑻

Linear 𝑾(𝑡; 𝜽)
=𝜽𝟏𝑡 + 𝜽2

Cubic 𝑾(𝑡; 𝜽)
=𝜽𝟏𝑡* + 𝜽𝟐𝑡++. .

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)ResNet:

Business 
as usual

Dial down 
complexity

Parameterize 𝑾(𝑡; 𝜽) and train for 𝜽’s.

Heavily overparameterized, 
does not generalize well

Parameterization of weight functions 
reduces capacity and 

improves generalization 



Weight parameterization (WP) improves generalization

Each dot is a training run with
varying weight parameterization 

functions

• Generalization Gap correlates with 
overparameterization

• Weight-parameterized ResNets 
reduce Generalization Gap

Weight Parameterization
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ResNet + WP improves accuracy

MLP: 
bad accuracy

ResNet: 
ok accuracy, 
but overfitting

WP:
perfect tradeoff



ResNet + WP enables UQ

• Number of parameters in ResNets, as well as MLPs, grows with linearly depth.

• Number of parameters  in weight-parameterized ResNets is independent of depth.

• We can easily achieve regimes with manageable MCMC dimensionality and 

posterior PDFs that out-of-box MCMC methods can easily sample.



ResNet + WP enables full Bayesian treatment

• Number of parameters in ResNet, as well as MLP, grows with linearly depth.

• Number of parameters  in weight-parameterized ResNets is independent of depth.

• We can easily achieve regimes with manageable MCMC dimensionality and 

posterior PDFs that out-of-box MCMC methods can easily sample.



Architectural regularization allows UQ
path toward better generalization and confidence assessment

Conventional
NN (MLP)

ResNets

Weight-parameterized 
(WP) 

ResNets

Optimal 
WP

(Apprx.) 
Bayesian

• [Work-in-progress with Lars Ruthotto, Emory U] 

orthogonal expansions for WP 

work better than monomials



QUiNN: Quantifying Uncertainty in NN
github.com/sandialabs/quinn



Summary

• UQ for NN challenged by many factors

• Draw inspiration from ODE and infinite depth limit

• ResNets regularize the learning problem, smoother loss/log-posterior surface

• Weight parameterization allows regularization without losing much expressivity

• Full Bayesian UQ treatment made more feasible with weight-parameterized 

residual NNs (WP ResNets)

• In progress: optimal (e.g., ortho basis) WP for better training and more accuracy

• In progress: extention to infinite-depth limit, Neural ODEs 

• Implemented in QUiNN: github.com/sandialabs/quinn modular code as a 

wrapper to three base categories of methods (MCMC, VI, Ens)

http://github.com/sandialabs/quinn


Literature Thank you!
• Z. Ghahramani, "Probabilistic machine learning and artificial intelligence". Nature 521, 452–459 (2015)

• D. J. C. MacKay, "A practical Bayesian framework for backpropagation networks". Neural Computation 4 448–472 (1992)

• R. M. Neal, "Bayesian Learning for Neural Networks". Springer, New York (1996)

• D. Lévy, M. D. Hoffman, and J. Sohl-Dickstein, "Generalizing Hamiltonian Monte Carlo with Neural Networks". ICLR (2018)

• C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, "Weight uncertainty in neural networks". arXiv:1505.05424 (2015)

• J.M. Hernández-Lobato, R. Adams, "Probabilistic backpropagation for scalable learning of Bayesian neural networks". ICML  (2015)

• E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, P. Hennig, "Laplace Redux-Effortless Bayesian Deep Learning” Advances in 
neural inf. proc. systems 34 (2021)

• Y. Gal,  Z. Ghahramani, "Dropout as a Bayesian approximation: representing model uncertainty in deep learning". ICML (2016)

• B. Lakshminarayanan, A. Pritzel, and C. Blundell, "Simple and scalable predictive uncertainty estimation using deep ensembles". NIPS'17. 
6405–6416 (2017)

• T. Pearce, F. Leibfried, A. Brintrup, "Uncertainty in Neural Networks: Approximately Bayesian Ensembling". Artificial Intelligence and 
Statistics, 108:234-244 (2020)

• W.J. Maddox, P Izmailov, T. Garipov, D.P. Vetrov, A. G. Wilson, "A simple baseline for Bayesian uncertainty in deep learning". NIPS (2019)

• R. Anirudh, J. J. Thiagarajan. "Delta-UQ: Accurate Uncertainty Quantification via Anchor Marginalization", arxiv.org/abs/2110.02197 (2021)

• Y. Hu, J. Musielewicz, Z. W. Ulissi and A. J. Medford, "Robust and scalable uncertainty estimation with conformal prediction for machine-
learned interatomic potentials" Machine Learning: Science and Technology, 3-4 (2022)

• L. Guo, H. Wu, W. Zhou, Y. Wang, T. Zhou, "IB-UQ: Information bottleneck based uncertainty quantification for neural function regression 
and neural operator learning", https://arxiv.org/abs/2302.03271 (2023)

• H. Li, Z. Xu, G. Taylor, C. Studer, T. Goldstein, "Visualizing the Loss Landscape of Neural Nets, NIPS (2018)

• R. T. Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, "Neural ordinary differential equations". NIPS'18 (2018).

• L. Ruthotto, E. Haber, "Deep neural networks motivated by partial differential equations". arXiv preprint arXiv:1804.04272 (2018)

• W. E, "A Proposal on Machine Learning via Dynamical Systems". Commun. Math. Stat. 5, 1–11 (2017)


