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Outline

Motivation: potential energy surface approximation
Machine learning for interatomic potentials (MLIAP)
Focus on SNAP potentials: linear regression

Bayesian estimation of MLIAPs
Importance of noise model assumptions
Embedded model error approach and likelihood construction

Active learning (AL) strategies for ML
Uncertainty-informed AL
Preliminary results
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Target: Potential energy surface (PES) approximation

E = f (x)

x represents coordinates/descriptors
E is energy

Accurate and fast surrogates for PES to replace quantum
mechanical computations for studies requiring many PES inquiries

saddle point search, transition paths, barrier heights
rapid assessment of reaction characteristics
automate the discovery of reactive pathways
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Active Learning and UQ are needed

Greater test accuracy with fewer training samples

Two challenging regimes:
Interpolation: developing a reliable
problem-specific IAP that would accurately
interpolate within the training domain is
nontrivial

Extrapolation: prediction outside the training
domain is even harder

Key: query strategy, whether to query high-fidelity quantum
mechanical (QM) simulation or not.

If such decision can be made reliably, then one does not need to
start with a very good training set
Rely on a well-calibrated uncertainty estimate
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Focus on SNAP (Left end of the figure)

[Thompson et al., 2015] SNAP: “Spectral neighbor analysis method for
automated generation of quantum-accurate interatomic
potentials”, J Comp Phys, 2015.

f (q) =

K∑
k=0

ckBk(q)

Linear expansion in parameters c.
Bayesian inference: both MCMC and analytical posterior PDFs
are feasible
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(Bayesian) Parameter Inference

Given a model f (x, c) and data yi = y(xi), calibrate parameters c.
Linear model f (x, c) = Bc with coefficients c
NN model f (x, c) = NNc(x) with weights/biases c

Bayesian least-squares fit:
p(c|y) ∝ p(y|c)p(c) ∝∏N

i=1 exp
(
− (f (xi,c)−yi)

2

2σ2

)

... corresponding data model yi = f (xi, c) + σ εi︸︷︷︸
N (0,1)

Exact answer for linear models: c ∼ N
(
(BTB)−1BTy, σ2(BTB)−1

)
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Posterior pushed-forward uncertainty does not capture
true discrepancy
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Elephant in the room: model is assumed to be *the*
correct model behind data

One gets biased estimates of parameters c (crucial if the model is
physical, and/or c is propagated through other models)

More data leads to overconfident predictions (we become more
and more certain about the wrong values of the data)

More evident when there is no observational/experimental data
error: e.g. hi-fi (QM) is data, and low-fi (SNAP) is model
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Capturing model error in data model (a.k.a. likelihood)

Typically requires uncertainty propagation in the likelihood computation

For linear regression, we can take some shortcuts (see next)
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Embedded Model Error for Linear Regression Models

Conventional (i.i.d. error term):

yi ≈
P∑

k=0

ckBk(xi) + σiεi

Embed uncertainty in all or selected coefficients:

yi ≈
P∑

k=0

(ck + dkξk)Bk(xi) =

Model︷ ︸︸ ︷
P∑

k=0

ckBk(xi) +

Model Error︷ ︸︸ ︷
P∑

k=0

dkBk(xi)ξk

Note:
For linear models, there is no formal distinction between
internal and external corrections: but the error is now model-informed.
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Joint MCMC inference of model parameters and model-error parameters

Conventional:

yi ≈
P∑

k=0

ckBk(xi) + σiεi p(c|y) ∝
N∏

i=1

exp

(
−(
∑P

k=0 ckBk(xi)− yi)
2

2σ2
i

)

Embedded:

yi ≈
P∑

k=0

(ck + dkξk)Bk(xi) =

Model︷ ︸︸ ︷
P∑

k=0

ckBk(xi) +

Model Error︷ ︸︸ ︷
P∑

k=0

dkBk(xi)ξk

p(c, d|y) ∝ p(y|c, d)︸ ︷︷ ︸
Likelihood

p(c, d)︸ ︷︷ ︸
Prior

Note:
Both likelihood and prior selection are challenging.
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Embedded Model Error: Two Approximate Likelihood Options

yi ≈
∑P

k=0(ck + dkξk) Bk(xi) =
∑P

k=0 ckBk(xi) +
∑P

k=0 dkBk(xi)ξk

Option 1: IID

p(c, d|y) ∝
N∏

i=1

exp

(
−(
∑P

k=0 ckBk(xi)− yi)
2

2
∑K

k=0 d2
k Bk(xi)2

)

Option 2: ABC

p(c, d|y) ∝
N∏

i=1

exp

− (
∑P

k=0 ckBk(xi)− yi)
2 + (

√∑P
k=0 d2

k B2
k(xi)− α|

∑P
k=0 ckBk(xi)− yi|)2

2ε2



Note:
Does not have to be MCMC: simply optimize the posterior for (c, d)
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Pushed forward predictive uncertainty
captures the true discrepancy from the data

ksargsy@sandia.gov UQ/AL for IAPs March 3, 2023 14 / 19



Uncertainty validation: W-ZrC Dataset

Uncertainty without model error

Uncertainty with model error
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Uncertainty validation: two examples

Conventional Embedded, IID Lik. Embedded, ABC Lik.

Ta
W

-Z
rC
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Several challenges and choices

Embedding type, e.g. additive/multiplicative

yi ≈
P∑

k=0

(ck+dkξk)Bk(xi) or yi ≈
P∑

k=0

(ck+ckdkξk)Bk(xi)

Degenerate (Gaussian) likelihoods: resort to approximate
Bayesian computation (ABC) or independent (IID) assumptions
Difficult posterior PDFs for MCMC, choice of priors for embedding
parameters
Which coefficients to embed the model error in?
Bonus: embedded model error approach is mechanically similar to
variational inference (a.k.a. Bayesian NNs)
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Notes and preliminary results on active learning

Efficiency of active learning improves with higher dimension.

Clustering (or rather, de-clustering) is
needed in pool-based active learning
Preliminary results on a set of
benchmark material science problems
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Summary Thank you!

Bayesian fit of parameterized interatomic potential models
Focused on linear models, but the framework applies to all
Noise assumptions are crucial

Embedded model error
Statistical correction inside the model: joint inference of model
parameters and the correction
Leads to model-driven noise model with baked-in uncertainty
Meaningful model-error uncertainty capturing the true residual
A few shortcuts in linear regression models
Choices to make: priors, approximate likelihoods, MCMC sampler,
where to embed...

Active learning
Anchored in uncertainty estimation (and clustering)
Choices to make: query strategy, UQ method, metric of ‘newness’...
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Additional Material



ML Interatomic Potentials (MLIAP): supervised ML

Input
x ∈ R3N

Fingerprint
z ∈ RM

Fcn Form
fp(z) Fit Data

E

Cartesian Morse
Symm. Fcn

PIP
Zernike
Gaussian

Bispectrum

NN
GAP

Regression
Low-rank Tensor

SVM

minp ||E − fp(z)||
RMSE
MAE

Regularization
Force Field

ab initio
DFT

Partition the interatomic interaction energy into individual
contributions of the atoms Etotal =

∑N
i=1 Ei

Assume flexible functional forms of each such contribution

Function of positions of the neighboring atoms
O(100) parameters

Require the energy, forces and/or stresses predicted by a MLIAP to be close to
those obtained by a quantum mechanical model on some atomic configurations
(a.k.a. training set)



MLIAP - desired features

Good input descriptors

Accurate, fast-to-evaluate, analytic derivatives

High-dimensional, flexible functional form

Transferable/generalizable to unseen atomic configurations

Account for physics:
invariant with respect to translation,rotation, and reflection of the
space, and also permutation of chemically equivalent atoms

Locality (depend on surrounding atoms only within a finite cut-off
radius), but remain smooth with respect to atoms entering and
leaving the local neighborhood

Equipped with uncertainty estimate
for active learning, for MD propagation, ...



Enabling parametric fits with uncertainties

y ≈ fc(x)



Uncertainty estimation options

y ≈ fc(x)

Bayesian inference:

Posterior︷ ︸︸ ︷
P(c|y) ∝

Likelihood︷ ︸︸ ︷
P(y|c)

Prior︷︸︸︷
P(c)

Markov chain Monte Carlo sampling of posterior PDF

Variational methods: c ∼ N(µ,Σ) and optimize µ,Σ.
Largely, this is also called Bayesian Neural Networks
Stochastic gradient descent to minimize evidence lower bound

Ensemble methods: many flavors.
Deep ensembles
Query-by-committee
Boosting/bagging



Training set selection is crucial

Configurations chosen for
training data influence results
Example: W-H
(tungsten/hydrogen) IAPs
Initial IAPs resulted in
hydrogen clusters in bulk
tungsten, which should not
occur
Additional training data was
generated and put into the
training set
Including these specific
configurations prevented
unphysical hydrogen
clustering

Results from Mary Alice Cusentino (SNL), using LAMMPS software.



Active Learning:
selection of training configurations

[B. Settles, “Active learning literature survey”, Computer Sciences Technical Report 1648,

University of Wisconsin-Madison, 2009]



Active Learning:
selection of training configurations

Greater test accuracy with fewer training samples

Two flavors of the challenge:
Interpolation: developing a reliable
problem-specific MLIAP that would
accurately interpolates within the training
domain is nontrivial

Extrapolation: prediction outside the training
domain is even harder

Key: query strategy, whether to query high-fidelity quantum
mechanical (QM) simulation or not.

If such decision can be made reliably, then one does not need to
start with a very good training set



Query Strategies:
almost all rely on some form of uncertainty estimate

Uncertainty sampling: an active learner queries the instances
about which it is least certain how to label.
Query-by-committee: committee of competing models, and pick
a query about which they most disagree. Need a measure of
disagreement.
Expected model change: which query would lead to greatest
model change, e.g. largest gradient length.
Variance Reduction and Fisher Information Ratio: minimizing
the variance component of generalization error estimate (via
Fisher Information)
Estimated error reduction: Estimate the expected future error
that would result if some new instance x is labeled and added to
training set, and then select the instance that minimizes that
expectation.



Optimality options

Straight out of wiki...



Active Learning: current workflow



Active Learning: Query Options



Polynomial fit: Extrapolation scenario

Order=2

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Extrapolation scenario

Order=3

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Extrapolation scenario

Order=4

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Extrapolation scenario

Order=5

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=2

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=3

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=4

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=5

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=10

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.



Query-by-Committee (QBC): algorithm sketch



Query-by-Committee (QBC): algorithm outline

Start with a large pool of P unlabeled points

Select a training set of N points from the pool

Launch K learners, each with fN randomly-chosen training points
Random sampling with replacement
Selection of fraction f determines data size per learner

– diversity vs data size tradeoff

Evaluate the learners’ performance at all points in the pool

Select M points from the pool, having highest ‘disagreement’, & add
them to the training set

M choice, size of batch added per query, low error vs optimal choice
K-means clustering to discover geometry of selected data
Distribute data from clusters evenly among learners

– Add fM points per learner with replacement

Re-train, and repeat query to evaluate learners performance on
prediction of unlabeled data in pool



QBC: Griewank test function

f (x) = 1+
∑d

i=1
x2

i
4000−

∏d
i=1 cos

(
xi√

i

)

Efficiency of active learning improves with higher dimension.



QBC: Sine test function

f (x) = sin
(∑d

i=1 xi

)

In low-d, large pool size causes newly selected points to cluster.
Potential solution: sample according to PDF e−std(x) to concentrate
new points near high uncertainty region, but select elsewhere, too.



Variational inference is a compromise between
Bayesian and Empirical approaches



Variational inference in a nutshell

KL(p1||p2) =
∫

ln
(

p1(x)
p2(x)

)
p1(x)dx

e.g. Mean-Field Variational Inference (MFVI): ansatz
c ∼ N (µ,diag(v)) and find best (µ, v), i.e.

minimize Kullback-Leibler distance to the full Bayesian posterior,
argmin(µ,v)KL(N (µ,diag(v))||N (µ0,Σ)),

replaces sampling (MCMC) problem with an optimization problem.



Note the connection between variational inference and
embedded model error

Variational methods: c ∼ N(µ,Σ) and optimize µ,Σ.

In NN context, this is largely called Bayesian Neural Networks

Minimize Kullback-Leibler distance via Stoch. Gradient Descent

Embedded model error: c ∼ N(µ,Σ) and optimize µ,Σ.

Minimize Gaussian approximation of output predictions (IID), or

Minimize statistics/moment matching criterion (ABC)

Next:
Overparameterized linear regression (mimicking NN) challenges mean-field
variational inference outside training support.



Uncertainty-enabling wrappers over PyTorch modules

MCMC struggles with complex NNs; VI underestimates;
Ensembles do well



Uncertainty-enabling wrappers over PyTorch modules

MCMC struggles with complex NNs; VI underestimates;
Ensembles do well
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