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Outline

@ Motivation: potential energy surface approximation

o Machine learning for interatomic potentials (MLIAP)
e Focus on SNAP potentials: linear regression

@ Bayesian estimation of MLIAPs

e Importance of noise model assumptions
o Embedded model error approach and likelihood construction

@ Active learning (AL) strategies for ML

e Uncertainty-informed AL
e Preliminary results
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Target: Potential energy surface (PES) approximation

E=f(x)
x represents coordinates/descriptors
E is energy

@ Accurate and fast surrogates for PES to replace quantum
mechanical computations for studies requiring many PES inquiries

e saddle point search, transition paths, barrier heights

o rapid assessment of reaction characteristics
e automate the discovery of reactive pathways

Minimum for
Prod

2= H-0-H Bond Angle

‘Valley-Ridge
Inflection Point
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Active Learning and UQ are needed

Greater test accuracy with fewer training samples

@ Two challenging regimes:

e Interpolation: developing a reliable ™™ o
problem-specific IAP that would accurately
interpolate within the training domain is

nontrivial o

e Extrapolation: prediction outside the training
domain is even harder

@ Key: query strategy, whether to query high-fidelity quantum
mechanical (QM) simulation or not.

e If such decision can be made reliably, then one does not need to
start with a very good training set
o Rely on a well-calibrated uncertainty estimate
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Focus on SNAP (Left end of the figure)

Descriptors [Complex (e.g. bispectrum) 33> Simple (e.g. cartesian]]
IAP Models ] Neural Networks
Bayesian Apprx. Heuristic

Mel:sods [Analytical ][ MCMC ][ Variational ][ Ensemble Methods]

@ [Thompson et al., 2015] SNAP: “Spectral neighbor analysis method for
automated generation of quantum-accurate interatomic
potentials”, J Comp Phys, 2015.

K
f@) =) aBilq)
k=0
@ Linear expansion in parameters c.

@ Bayesian inference: both MCMC and analytical posterior PDFs
are feasible
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(Bayesian) Parameter Inference

@ Given a model f(x, ¢) and data y; = y(x;), calibrate parameters c.
o Linear model f(x, c) = Bc with coefficients ¢
@ NN model f(x,c) = NN.(x) with weights/biases ¢

@ Bayesian least-squares fit:

XiyC)—Yi 2
plely) o< p(ylelp(e) o T exp (— L0 )

@ ... corresponding data model y; = f(x;,¢) + o €
~—~
N(0,1)

@ Exact answer for linear models: ¢ ~ N ((B"B)~'B"y, s?(B"B)™!)
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Posterior pushed-forward uncertainty does not capture
true discrepancy

N=7, Poly order=3 N=20, Poly order=3

Synthetic data e N
y(x) = sin*(2x — 0.3) y

Cubic fit

100 075 050 025 000 025 050 075 100 100 075 050 025 000 025 050 075 100

3
Yi® Z ckBk(x) N=100, Poly order=3 N=200, Poly order=3
k=0 .

More data leads to
overconfident prediction -

100 075 050 025 000 025 050 075 100 100 075 050 025 000 035 050 075 100
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Elephant in the room: model is assumed to be *the*
correct model behind data

Model  patg err,
Vi =f(xi, c)+ Oi€; Model # Truth
Truth

@ One gets biased estimates of parameters ¢ (crucial if the model is
physical, and/or c is propagated through other models)

@ More data leads to overconfident predictions (we become more
and more certain about the wrong values of the data)

@ More evident when there is no observational/experimental data
error: e.g. hi-fi (QM) is data, and low-fi (SNAP) is model
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Capturing model error in data model (a.k.a. likelihood)

.= flx;, c) + 6(x)) + ok;
External correction Vi f( ! ) ( ’) v

(Kennedy-O’Hagan): + Kennedy, O’Hagan, “Bayesian Calibration of Computer Models”.
J Royal Stat Soc: Series B (Stat Meth), 63: 425-464, 2001.

yi = fx;, ¢ + 6(x;y) + o€

Internal correction + Allows meaningful usage of calibrated model
(embedded model error): + ‘Leftover’ noise term even with no data error
* Respects physics (not too relevant in our context)

« Sargsyan, Najm, Ghanem, “On the Statistical Calibration of Physical Models”.

Int. J. Chem. Kinet., 47: 246-276, 2015.

« Sargsyan, Huan, Najm, “Embedded Model Error Representation for Bayesian Model Calibration”.
Int. J. Uncert. Quantif., 9(4): 365-394, 2019.

@ Typically requires uncertainty propagation in the likelihood computation

@ For linear regression, we can take some shortcuts (see next)
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Embedded Model Error for Linear Regression Models

Conventional (i.i.d. error term):

P

Vi = Z ckBi(xi) + oi€j
k=0

Embed uncertainty in all or selected coefficients:

Model Model Error

P
vi ~ Y (cx + die)Bi(x;) Z ckBr(xi) + deBk xi)&,
k=0

Note:
For linear models, there is no formal distinction between
internal and external corrections: but the error is now model-informed.
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Joint MCMC inference of model parameters and model-error parameters

Conventional:

P

201.2

CkBk )2
Vi & ZCkBk(Xi) + o6 plely) o Hexp ( (g cxBi(xi) — i) )

k=0

Embedded:
Model Model Error

P
vi~ Y (cx + die)Bi(x;) Z ckBr(xi) + deBk ;)&
k=0

p(c,dly) < p(yle,d) p(c,d)
—— Y~
Likelihood  Prior
Note:

Both likelihood and prior selection are challenging.
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Embedded Model Error: Two Approximate Likelihood Options

Vi m Yook + di&) Be(xi) = Sp_ocBr(xi) + D p_o diBi(xi)

Option 1: 1ID

al P
c X ex _ (Zk;o CkBk(Xi) _ yi)2
p(c,dly) Hl P( 25K BBy () )

Option 2: ABC

N
ple,dly) o< [ [ exp

i=1

\
( (Xm0 ckBr(xi) = 3i) + (\) Sig 2B (i) — al Yop_y cuBe(xi) — vil)?
- 2¢e?

/

Note:
Does not have to be MCMC: simply optimize the posterior for (c,d)
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Pushed forward predictive uncertainty
captures the true discrepancy from the data

Synthetic data Cubic fit
3
¥(x) = sin*(2x - 0.3) Yim Y GB)
k=0

Classical case Model error, 11D likelihood Model error, ABC likelihood

N=100, Poly order=3 N=100, Poly order=3 N=100, Poly order=3
14 * Data 23 e Data e Data

== True model == True model 150 ——. Frue model
12 — Fit mean 20| — Fit mean — Fit mean
10 Fit stdev. Fit stdev. 125 Fit stdev.
o
)‘n 6|
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Uncertainty validation: W-ZrC Dataset

Uncertainty without model error
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Uncertainty validation: two examples

Ta

Data Fraction

W-ZrC

Data Fraction

Conventional

Embedded, IID Lik.

—— Training
—— Testing

Data Fraction

—— Training
—— Testing

Data Fraction

—— Training
—— Testing

Prediction Quantile

Prediction Quantile

" Prediction Quantile

—— Training
— Testing

Data Fraction

—— Training
—— Testing

Data Fraction

—— Training
—— Testing

Prediction Quantile
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Several challenges and choices

@ Embedding type, e.g. additive/multiplicative

P P
i~ > (citdi&e) Bil(x;) or ~ > (crterdiée) Bi(xi)
k=0 k=0

@ Degenerate (Gaussian) likelihoods: resort to approximate
Bayesian computation (ABC) or independent (1ID) assumptions

@ Difficult posterior PDFs for MCMC, choice of priors for embedding
parameters

@ Which coefficients to embed the model error in?

@ Bonus: embedded model error approach is mechanically similar to
variational inference (a.k.a. Bayesian NNs)
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Notes and preliminary results on active learning

@ Efficiency of active learning improves with higher dimension.

‘‘‘‘‘‘‘‘‘‘‘

@ Clustering (or rather, de-clustering) is
needed in pool-based active learning

@ Preliminary results on a set of
benchmark material science problems
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Summary Thank you!

@ Bayesian fit of parameterized interatomic potential models

e Focused on linear models, but the framework applies to all
o Noise assumptions are crucial

@ Embedded model error

e Statistical correction inside the model: joint inference of model
parameters and the correction

Leads to model-driven noise model with baked-in uncertainty
Meaningful model-error uncertainty capturing the true residual

A few shortcuts in linear regression models

Choices to make: priors, approximate likelihoods, MCMC sampler,
where to embed...

@ Active learning

@ Anchored in uncertainty estimation (and clustering)
e Choices to make: query strategy, UQ method, metric of ‘newness’...
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Additional Material



ML Interatomic Potentials (MLIAP): supervised ML

Input Fingerprint Fcn Form Data
z € RN z € RM Tn(2)

Cartesian Morse ab |n|t|o
Symm. Fcn GAP min ||E — £,(2)
PIP Regression RMSE
Zernike Low—r;s:r\llkN'll'ensor R I\I/IAE "
. egularization
B Force Field
@ Partition the interatomic interaction energy into individual o @,
contributions of the atoms Eita = Zf.v: W E 1C) 0.
@ Assume flexible functional forms of each such contribution . ®.0
5

@ Function of positions of the neighboring atoms
@ O(100) parameters

@ Require the energy, forces and/or stresses predicted by a MLIAP to be close to
those obtained by a quantum mechanical model on some atomic configurations
(a.k.a. training set)



MLIAP - desired features

@ Good input descriptors

@ Accurate, fast-to-evaluate, analytic derivatives

@ High-dimensional, flexible functional form

@ Transferable/generalizable to unseen atomic configurations

@ Account for physics:

e invariant with respect to translation,rotation, and reflection of the
space, and also permutation of chemically equivalent atoms

@ Locality (depend on surrounding atoms only within a finite cut-off
radius), but remain smooth with respect to atoms entering and
leaving the local neighborhood

@ Equipped with uncertainty estimate
o for active learning, for MD propagation, ...



Enabling parametric fits with uncertainties

y = fe(x)

Descriptors [ Complex (e.g. bispectrum) 33> Simple (e.g. cartesian) ]

LT e egression I Newsinetwors 3

uQ Bayesian Apprx. Heuristic
Methods [Analvtical ][ MCMC ][ Variational ][ Ensemble Methods]




Uncertainty estimation options

y ~ fe(x)

Posterior Likelihood Prior

. —~ = —~ = =
@ Bayesian inference: P(cly) o P(y|c) P(c)
@ Markov chain Monte Carlo sampling of posterior PDF

@ Variational methods: ¢ ~ N(u, ¥) and optimize p, .

o Largely, this is also called Bayesian Neural Networks
e Stochastic gradient descent to minimize evidence lower bound

@ Ensemble methods: many flavors.
o Deep ensembles
o Query-by-committee
e Boosting/bagging



Training set selection is crucial

@ Configurations chosen for
training data influence results  Grey: Tungsten Green: Hydrogen

Y Exam p|e: W_ H Irﬂtial Poor Hydrogen Cluftering Behavior

(tungsten/hydrogen) |IAPs I .
@ Initial IAPs resulted in ~
' @
hydrogen clusters in bulk °” 8
tungsten, Wh|Ch Sh0u|d not Generated New Training Data Based on
Poor Initial Performance
occur Qg oooooo
@ Additional training data was ¢ +289°
generated and put into the 2 02e%°
training set Improved Clustering Behavior with

@ Including these specific
configurations prevented
unphysical hydrogen
clustering

Results from Mary Alice Cusentino (SNL), using LAMMPS software.



Active Learning:
selection of training configurations

membership query synthesis

model generates
a query de novo

stream-based selective sampling

instance
space or input “§y-----
distribution

sample an__ _ _ >0 model decides to
instance query or discard

pool-based active learning query is labeled
—— by the oracle

_____ sample a large ____ model selects
pool of instances u the best query

[B. Settles, “Active learning literature survey”, Computer Sciences Technical Report 1648,
University of Wisconsin-Madison, 2009]



Active Learning:
selection of training configurations

Greater test accuracy with fewer training samples

@ Two flavors of the challenge: =

‘‘‘‘‘

nnnnnnn
‘‘‘‘‘‘‘‘

e Interpolation: developing a reliable oy
problem-specific MLIAP that would
accurately interpolates within the training
domain is nontrivial Laber

‘‘‘‘‘‘‘‘‘‘‘‘‘‘
rrrrrr

ailaple \m:
Train

bbbbb

e Extrapolation: prediction outside the training
domain is even harder

@ Key: query strategy, whether to query high-fidelity quantum
mechanical (QM) simulation or not.
o If such decision can be made reliably, then one does not need to
start with a very good training set



Query Strategies:
almost all rely on some form of uncertainty estimate

@ Uncertainty sampling: an active learner queries the instances
about which it is least certain how to label.

@ Query-by-committee: committee of competing models, and pick
a query about which they most disagree. Need a measure of
disagreement.

@ Expected model change: which query would lead to greatest
model change, e.g. largest gradient length.

@ Variance Reduction and Fisher Information Ratio: minimizing
the variance component of generalization error estimate (via
Fisher Information)

@ Estimated error reduction: Estimate the expected future error
that would result if some new instance x is labeled and added to
training set, and then select the instance that minimizes that
expectation.



Optimality options

Straight out of wiki...

* A-optimality ("average" or trace)

« One criterion is A-optimality, which seeks to minimize the trace of the inverse of the information matrix. This

criterion results in minimizing the average variance of the estimates of the regression coefficients.
* C-optimality

 This criterion minimizes the variance of a best linear unbiased estimator of a predetermined linear combination of
model parameters.

* D-optimality (determinant)

« A popular criterion is D-optimality, which seeks to minimize I(X'X)~"l, or equivalently maximize the determinant of
the information matrix X'X of the design. This criterion results in maximizing the differential Shannon information
content of the parameter estimates.

« E-optimality (eigenvalue)
o Another design is E-optimality, which maximizes the minimum eigenvalue of the information matrix.
« T-optimality
 This criterion maximizes the trace of the information matrix.
Other optimality-criteria are concerned with the variance of predictions:
* G-optimality

* Apopular criterion is G-optimality, which seeks to minimize the maximum entry in the diagonal of the hat matrix

X(X'X)~1X". This has the effect of minimizing the maximum variance of the predicted values.
« |-optimality (integrated)

« A second criterion on prediction variance is | imality, which seeks to minimize the average prediction variance
over the design space.
* V-optimality (variance)

« Athird criterion on prediction variance is V-optimality, which seeks to minimize the average prediction variance



Active Learning: current workflow

Generate pool of

Vi b initi
unlabeled structures enna ab infflo

MD, genetic algo, etc.

4

Evaluate random
structures

https://github.com/FitSNAP/FitSNAP
L

sim package, vast.at

FitSNAP.py

Initial dataset:
structure -> Energy,
forces, stresses

Train FitSNAP model
w/ UQ solvers

Add new structures
to training data

Structures with
Coefficient the most uncertain
covariance Evaluate prediction ) predictions
uncertainty
on unlabeled pool

Cluster and select
structures from pool

Structures: energies, forces, stresses Run VASPto
calculate properties

on chosen structures



Active Learning: Query Options

Add

e g o ooeled w " o prssve v
model bageg o v et

WMailale |, » A A @ active training.
Train beled daty o & active testing

Train

trining ser - Enrich

Labeled Data

Mean Squared Relatve Error

oy Label D LS——
abel sele, Uncertainty o 1 =
Unlabele ed N t unlaee o
i amp UQ il ey i
Ariational gaye, O 10

* Ensembles _que

104

. Unlabeled

Sele -
Eeh of gy

samples.
with b,
Preticiug g et

ertiny
Query-by-Committee (QBC) Bayesian Uncertainty

« Launch K learners, each with fN training points (f=0.8) « Launch a single learner

+ Evaluate the learners’ performance at all points in the pool « Evaluate its performance at all points in the pool

« Select training points from the pool that correspond to the « Select training points from the pool that correspond to the

highest 'disagreement’ and add them to the training set highest posterior uncertainty and add them to the training set



Polynomial fit: Extrapolation scenario

Order=2

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

-04 0.2 0.0 0.2 0.4 0.6 0.8 1.0 -04 0.2 0.0 0.2 0.4 0.6 0.8 1.0
x x

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.



Polynomial fit: Extrapolation scenario

Order=3

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

—— Mean Prediction

2 15| — Mean Prediction
e Data e Data
mEm Std. Deviation 10| ™= Std. Deviation
10
5
0 @Ot iD @ ee-O 0 e et

™

-04 -02 00 02 04 06 08 10 -04 -02 00 02 04 06 08 10
X X

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.



Polynomial fit: Extrapolation scenario

Order=4

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

mm Std. Deviation

o \_/,,mucmumw i

-04 -02 0.0 0.2 0.4 0.6 0.8 1.0
X

-04 -02 00 02 04 06 08 10
X

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.




Polynomial fit: Extrapolation scenario

Order=5

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

—— Mean Prediction
® Data
W Std. Deviation

0 ® @O0 @09 I )
-10 i

-04 0.2 0.0 0.2 0.4 0.6 0.8 1.0 -04 0.2 0.0 0.2 0.4 0.6 0.8 1.0
x x

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=2

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

<

—04 -02 00 02 04 06 08 10
X X

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=3

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

—— Mean Prediction .4

0 e °4

—0.4 -02 00 02 04 06 08 10 —0.4 -02 00 02 04 06 08 1.0
X X

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=4

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

—— Mean Prediction
075 ® Data
m Std. Deviation

—— Mean Prediction
e Data
Wm Std. Deviation

-0.50

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.



Polynomial fit: Interpolation scenario

Order=5

Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))

125

—— Mean Prediction 1.25| —— Mean Prediction
100| © Data ® Data
mm Std. Deviation W Std. Deviation

. ‘e

—0.4 -02 00 02 04 06 08

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.




Polynomial fit: Interpolation scenario

Order=10
Full Bayesian Posterior Variational Posterior
N(p, %) N(p, 1/diag(27"))
i ‘ T g:;n Prediction 1.25 T g:taan Prediction

W Std. Deviation 1.00| mmm Std. Deviation

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,
in the overparameterized regimes.



Query-by-Committee (QBC): algorithm sketch

Unlabeled Data Pool

.-‘ Training i Prediction -
Training { Prediction
Labeled - | - Uncertainty

Data - Training : Prediction - Estimation
[

Training 1 Prediction

I

- I

1

Training

Prediction

Label Data Select Data




Query-by-Committee (QBC): algorithm outline

Start with a large pool of P unlabeled points
Select a training set of N points from the pool

Launch K learners, each with fN randomly-chosen training points

e Random sampling with replacement
o Selection of fraction f determines data size per learner
— diversity vs data size tradeoff

Evaluate the learners’ performance at all points in the pool

Select M points from the pool, having highest ‘disagreement’, & add
them to the training set
@ M choice, size of batch added per query, low error vs optimal choice
e K-means clustering to discover geometry of selected data
e Distribute data from clusters evenly among learners
— Add fM points per learner with replacement

Re-train, and repeat query to evaluate learners performance on
prediction of unlabeled data in pool



QBC: Griewank test function

2 .
flx) = H’Z?:l 3000 _H?:1 cos (z)

Griewank with dim = 16 Griewank with dim = 32

@ Efficiency of active learning improves with higher dimension.



QBC: Sine test function

Sin_Func: dim = 2

Sin_Func with dim = 32

esting Erfor (RMSE)

g0

@ In low-d, large pool size causes newly selected points to cluster.

@ Potential solution: sample according to PDF ¢~ to concentrate
new points near high uncertainty region, but select elsewhere, too.



Variational inference is a compromise between
Bayesian and Empirical approaches

Descriptors [ Complex (e.g. bispectrum) 33> Simple (e.g. cartesian) ]

IAP Models ession N N]] Neural Networks
Bayesian Apprx. Heuristic

uq
Methods [Analytical ][ MCMC ][ Variational ][ Ensemble Methods]




Variational inference in a nutshell

Full Bayesian posterior
plely) & p(yle)p(e)

{ e KL(p1|lp2) = [ 1n (229 )1 ()dx

q4(c)

Class of parameterized
variational posteriors

@ e.g. Mean-Field Variational Inference (MFVI): ansatz
¢ ~ N(u,diag(v)) and find best (p,v), i.e.

@ minimize Kullback-Leibler distance to the full Bayesian posterior,
argmin(u,v) KL(N(:UH dlag(V))HN(/.L(), E)),

@ replaces sampling (MCMC) problem with an optimization problem.



Note the connection between variational inference and
embedded model error

@ Variational methods: ¢ ~ N(u, ) and optimize p, 3.

@ In NN context, this is largely called Bayesian Neural Networks

e Minimize Kullback-Leibler distance via Stoch. Gradient Descent

@ Embedded model error: ¢ ~ N(u, ) and optimize p, X.

e Minimize Gaussian approximation of output predictions (IID), or

e Minimize statistics/moment matching criterion (ABC)

Next:
Overparameterized linear regression (mimicking NN) challenges mean-field
variational inference outside training support.



Uncertainty-enabling wrappers over PyTorch modules

Deterministic Probabilistic

torch.nn.module » wrapper(torch.nn.module)

Option 1: ensemble NN Option 2: NN learning with MCMC Option 3: NN learning with VI
nn_ens = EnsRegr(torch.nn.module, nens=111)  nn_mcmc = MCMCRegr(torch.nn.module) nn_vi = VIRegr(torch.nn.module)
s
) crass 0 Class VIRegr():
) def _init_ (self, nnn , ~True) def _init_(self, nnmodule, verbose=False):
Sel7.nnmodule = nnmodute Self.bmodel = Bet (nnnodule)
self.verbose = verbose self.verbose = verbose
\
ens meme
vi
Truth Truth Truth
15— n Prediction e "
Mean Predictior 25 Waan Prediction 15| —— Mean Prediction

10| mmm Std. Deviation W Std. Deviation

o Data
i = Std. Deviation
05 7 1.0|
o
o C
0 15
> 00 > > 03,
10 _.!

-05
00
5
-10
s o B 05
2 o0 02 04 06 08 10 12 02 o0 02z 04 06 08 10 12 o2 00 02 o0& 06 08 10 12

x

@ MCMC struggles with complex NNs; VI underestimates;
Ensembles do well



Uncertainty-enabling wrappers over PyTorch modules

Deterministic Probabilistic
torch.nn.module » wrapper(torch.nn.module)
Option 1: ensemble NN Option 2: NN learning with MCMC Option 3: NN learning with VI

nn_ens = EnsRegr (torch.nn.module,

11)  nn_mcmc = MCMCRegr(torch.nn.module) nn_vi = VIRegr(torch.nn.module)

. class ) class 0:

! def _init_( bose=True) def _init__(self, nnmodule, verbose=False):
Self.nimodule = nnmodule Self.bnodel = Blet (nnmodule)
self.verbose = verbose self.verbose = verbose

. o ~ . A
0.75 . b
J ;o\
A
i

o i os !
T m 025 Truth Truth
\ \ o
— Sld Dev lation 0.25/ \- Std. D& fiation / % === Std. Deviation
A LS
\
\

015 ¥ ¥
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@ MCMC struggles with complex NNs; VI underestimates;
Ensembles do well
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