

Fusion Energy Sciences (FES).

Uncertainty Quantification of Machine Learning Interatomic Potential Models

Sandia National Laboratories, Livermore, CA, USA

Khachik Sargsyan, Logan Williams, Habib N. Najm

Uncertainty Validation

No model error

Uncertainty Propagation

- MLIAP parameters $c = \sum_{k=0}^{K} a_k \Psi_k(\xi)$

- regression
- Variance-based decomposition (global sensitivity analysis)
- of the output PCs

Summary

- molecular dynamics

Sandia National Laboratories is a a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

We employ Spectral Neighbor Analysis Potential (SNAP) and FitSNAP (https://github.com/FitSNAP/FitSNAP)

Embedded approach leads to better calibrated uncertainties enabling efficient active learning and uncertainty propagation.

Forward UQ via Polynomial Chaos (PC)

Based on Bayesian MLIAP fit, construct input PC for Sample input parameters and IAPs, E(x) = f(x, c)Obtain molecular dynamics Qols h = MD(E(x))Build PC expansion for MD Qols: $h = \sum_{k=0}^{K} b_k \Psi_k(\xi)$ via Evaluate Qols statistics, compare to DFT benchmarks

 Bayesian fit of ML interatomic potentials: supervised ML • Embedded model error with baked-in uncertainty -Model-error uncertainty capturing the true residual • Polynomial chaos based uncertainty propagation through

