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•Partition the interatomic interaction energy into
individual contributions of the atoms

Etotal =
∑N

i=1Ei

•Assume flexible functional forms with respect to
positions of the neighboring atoms

E ≈ f (x, c)

ML Interatomic Potentials (MLIAPs)

Parameter inference
• Given a model f (x, c) and data yi = y(xi), calibrate pa-

rameters c such that yi ≈ f (xi, c)
–Linear model y ≈ Ac with coefficients c, or
–NN model y ≈ NNc(x) with weights/biases c.

• Weighted least-squares fit:
c∗ = argminc

∑N
i=1w

2
i (f (xi, c)− yi)2

Likelihood function or data model

Bayesian Inference of MLIAPs

Elephant in the room: model error

Ignoring model error hurts in a few ways:

• Biased estimates of parameters c (crucial if the model is
physical, and/or c is propagated through other models)

• More data leads to overconfident predictions (we become
more and more certain about the wrong values of the data)

Capturing model error in data model

Embedded model error method
• Statistical correction inside the model

yi ≈ f (xi, c + dN (0, 1))

• Can be done non-intrusively, with a surrogate
• Jointly infer parameters of model and model error

p(c, d|y) ∝ p(y|c, d)p(c, d)

• Degenerate likelihood: needs approximations
– Independent output approximation (IID):

p(c, d|y) ∝∏N
i=1 exp

(
−(µf(xi,c)−yi)2

2σ2
f(xi,c)

)
–Approximate Bayesian computation (ABC):

p(c, d|y) ∝
N∏
i=1

exp

(
−(µf(xi, c)− yi)2 + (σf(xi, c)− α|µf(xi, c)− yi|)2

2ε2

)

Model Error

• We employ Spectral Neighbor Analysis Potential (SNAP)
and FitSNAP (https://github.com/FitSNAP/FitSNAP)

• Embedded approach leads to better calibrated uncertainties
enabling efficient active learning and uncertainty propagation.

Two examples with SNAP
No model error Embedded, IID Embedded, ABC

Uncertainty Validation

Forward UQ via Polynomial Chaos (PC)

• Based on Bayesian MLIAP fit, construct input PC for
MLIAP parameters c =

∑K
k=0 akΨk(ξ)

• Sample input parameters and IAPs, E(x) = f (x, c)
• Obtain molecular dynamics QoIs h = MD(E(x))

• Build PC expansion for MD QoIs: h =
∑K

k=0 bkΨk(ξ) via
regression

• Evaluate QoIs statistics, compare to DFT benchmarks
• Variance-based decomposition (global sensitivity analysis)

of the output PCs

Uncertainty Propagation

• Bayesian fit of ML interatomic potentials: supervised ML
• Embedded model error with baked-in uncertainty
–Model-error uncertainty capturing the true residual

• Polynomial chaos based uncertainty propagation through
molecular dynamics

Summary


