
Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration

under contract DE-NA0003525.

Training and Generalization of
Residual Neural Networks as
Discrete Analogues of Neural ODEs

Khachik Sargsyan (SNL-CA)

SNL-CA : Joshua Hudson, Oscar Diaz-Ibarra, Marta D’Elia, Habib Najm
Emory U : Lars Ruthotto, Haley Rosso

MLDL Workshop

July 26, 2022

SAND2022-9064 C

SNL LDRD Project:
Analysis of Neural Networks as Random Dynamical Systems

Take advantage of ‘continuous’ limit
of residual neural networks.

Despite all the success, there are many
recognized challenges and unknowns in neural network behavior

Confidence assessment

Robustness to adversarial attacks

Probabilistic NNNeural ODEs

Probabilistic viewpoint opens even
more opportunities

Generalization / predictability

Physical insight / interpretation

1

Road to Trusted AI

Arguably, the two most important hurdles along the way

Confidence assessment

Probabilistic NNNeural ODEs / ResNets

Generalization / predictability

2

Tools:

Goals:

Take advantage of legacy knowledge in ODEs and UQ to achieve

• Improved architectures

• Generalizable models

• Confidence assessment

• Robustness to noise

Main building block: ResNets3

Neural Networks (NNs) layer-to-layer function
weightsstate

Main building block: ResNets3

Residual NN: learn the residual, not the state

Neural Networks (NNs) layer-to-layer function
weightsstate

Main building block: ResNets3

Residual NN: learn the residual, not the state

Neural Networks (NNs) layer-to-layer function
weightsstate

Now, take the limit of infinite layers

Main building block: ResNets3

Residual NN: learn the residual, not the state

Neural Networks (NNs) layer-to-layer function
weightsstate

Now, take the limit of infinite layers

Main building block: ResNets3

Residual NN: learn the residual, not the state

Neural Networks (NNs) layer-to-layer function
weightsstate

Now, take the limit of infinite layers

Main building block: ResNets3

Residual NN: learn the residual, not the state

Neural Networks (NNs) layer-to-layer function
weightsstate

Now, take the limit of infinite layers

Main building block: ResNets3

Residual NN: learn the residual, not the state

Neural Networks (NNs) layer-to-layer function
weightsstate

Now, take the limit of infinite layers

… … … … … … … … … …

… … … … … … … … …

… … … … … … … … …

… … … … … … … … …

… … … … … … … … …

𝒙 = 𝒙𝟎 𝒚 = 𝒙𝑻
Input Output

Focus on: ResNet and NODE in a regression setting
(supervised ML)

ResNet (discrete) Neural ODE (continuous)

𝒙𝟏 = 𝒙 + 𝜶𝟎𝝈(𝑾𝟎𝒙𝟎 + 𝒃𝟎)
.

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)
𝐴

𝒚 = 𝒙𝑳'𝟏 + 𝜶𝑳'𝟏𝝈(𝑾𝑳'𝟏𝒙𝑳'𝟏 + 𝒃𝑳'𝟏)

𝑑𝒙
𝑑𝑡 = 𝝈(𝑾 𝑡 𝒙 + 𝒃 𝑡)

𝒙 0 = 𝒙 𝒙(𝑇) = 𝒚

4

ResNets regularize loss landscape compared to MLPs

Multilayer Perceptron (learning the layer) ResNets (learning the layer diff.)

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)ResNet:𝒙𝒏%𝟏 = 𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)MLP NN:

5

𝒙 = 𝒙𝟎 𝒚 = 𝒙𝑻
Input Output

t=0 t=T

𝑾𝟎 𝑾𝟏

Weight parameterization as a regularization tool,
inspired by ODEs

Training for weight matrices 𝑾𝟎,𝑾𝟏, …

NonPar 𝑾(𝑡; 𝜶)
= 𝑾𝒕𝑳/𝑻

Linear 𝑾(𝑡; 𝜶)
= 𝜶𝑡 + 𝜷

Cubic 𝑾(𝑡; 𝜶)
= 𝜶𝒕𝟑 + 𝜷𝒕𝟐+. .

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)ResNet:

Business
as usual

Dial down
complexity

Parameterize 𝑾(𝑡; 𝜶) and train for 𝜶’s.

Heavily overparameterized,
does not generalize well

Parameterization of weight functions
reduces capacity and

improves generalization

6

Weight parameterization (WP) improves generalization

Each dot is a training run with
varying weight parameterization

functions

• Generalization Gap correlates with
overparameterization

• Weight-parameterized ResNets
reduce Generalization Gap

Weight Parameterization

Be
tt

er
 G

en
er

al
iz

at
io

n

7

8
ResNet + WP improves accuracy

MLP:
bad accuracy

ResNet:
ok accuracy,
but overfitting

WP:
perfect tradeoff

Progressive improvements:
path toward generalization and confidence assessment

9

Conventional
NN (MLP)

ResNets

Weight-parameterized
(WP)

ResNets

Optimal
WP

(Apprx.)
Bayesian

• Conventional NN: training for deterministic weight matrices 𝑾𝟎,𝑾𝟏, …

• Probabilistic approach: training for probability distributions 𝒑(𝑾𝟎), 𝒑(𝑾𝟏), …

• Three classes of options:

Full Bayesian Approximate Bayesian Ensemble methods

Ø Markov chain Monte Carlo (MCMC)

• Typically, infeasible for
overparameterized NNs

• With weight parameterization
loss functions are better behaved
(lower-dimensional, fewer symmetries),
hence MCMC path more feasible

Ø Variational methods

• Practically feasible, but many
hyperparameters to tune

• Typically underestimates
extrapolative predictions

Ø Heuristic, but

• … works best for
complex models

• Deep ensembles,
committee of models

• Many recent papers
connecting as a
Bayesian approximation

10
Probabilistic Learning: Bayesian NN

QUiNN: Quantifying Uncertainties in NN
software soon-to-be-released on github

11

Apps:

E3SM Vegetation Dynamics
• 15 input parameters
• 10 static output QoIs
• 2K training simulations

• Multiple applications are informing the development of foundational research
• None of these applications have been previously exposed to NN prediction

uncertainties, particularly in the context of ResNets and weight parameterization

FitSNAP Entropy Dataset
• 30 input bases
• 1 output (Energy/Force/Stress)
• 20K training DFT simulations

CO-on-Pt(111) Adsorbate
• 6 input d.o.f.
• 1 output (Energy)
• 10K training DFT simulations

12

Summary
13

• Focus on ResNets and draw inspiration from ODEs

• ResNets regularize the learning problem, smoother loss surface

• Weight parameterization (WP) allows further regularization

• Optimal (e.g., ortho basis) WP for better training and more accuracy

• Probabilistic approaches more feasible with weight-parameterized ResNets

• Need to find sweet spot between empirical to fully Bayesian

Extra Materials

Analysis of Neural Networks as Random Dynamical Systems

Probabilistic NNNeural ODEs

PNODEs

Dynamical Analysis Regularization Stability
• Singular perturbation
• Stiffness
• Model reduction
• Non-local interactions

• Random field
parameterization of weights
• Enforce structure:
smoothness, sparsity, low-rank

• Robustness with noise
• Eigenvalue structure
under uncertainty

Generalizable model; improved architecture; confidence assessment; robustness to noise

Foundational capabilities impacting multiple applications

Predictive capability of Neural Networks (NNs) hinges on generalization
(ability to predict well outside training data).

Regularization of NNs as a way to achieve generalization.

Stiffness Penalization

Weight Parameterization

Probabilistic Weights

Climate Land Modeling

Catalytic Chemistry

Materials Science

Methods Applications

✔

✔

✔

✔

✔

✔

DTO vs OTD

𝒙𝒏%𝟏 = 𝒙𝒏 + 𝜶𝒏𝝈(𝑾𝒏𝒙𝒏 + 𝒃𝒏)
𝑑𝒙
𝑑𝑡 = 𝝈(𝑾 𝑡 𝒙 + 𝒃 𝑡)

Forward equivalence:
Neural ODE discretized using explicit Euler and ResNet
produce identical outputs choosing time step: 𝛥𝑡 = !

"
,

𝛼#: = 𝛥𝑡, 𝑾𝒏: =𝑾 𝑛𝛥𝑡 and 𝒃𝒏: = 𝒃 𝑛𝛥𝑡 for all 𝑛.

ResNet NODE

Backward not so much:

Gradient computations differ!

Consider 𝑊 𝑡 ≡ 𝑊 and 𝑏 ≡ 0:
Discretized Neural ODE with adjoint method:

∇𝑙𝑜𝑠𝑠 = 2 1 + 𝛿𝑡 𝑊 "𝑥 − 𝑦 1 + 𝛿𝑡 𝑊 "𝑥
ResNet with backpropagation:
∇𝑙𝑜𝑠𝑠 = 2 1 + 𝛿𝑡 𝑊 " 𝑥 − 𝑦 1 + 𝛿𝑡 𝑊 "%&𝑥

• Gradients converge as 𝐿 → ∞ but differences can be large for small 𝐿,
• Optimize then discretize (adjoint method) ≠ discretize then optimize (backpropagation).

Prior Work on Probabilistic NN

• Probabilistic NN have been around since 90s [MacKay, 1992; Neal, 1997]

• Full probabilistic treatment was infeasible back then (and still is, generally)

• Recent work showed avenues via variational methods with clever tricks:

Bayes by Backprop [Blundell, 2015]; Probabilistic backprop [Hernandez-Lobato 2015]

• Ghahramani, “Probabilistic Machine Learning and Artificial Intelligence”. Nature, 2015

• “Nearly all approaches to probabilistic programming are Bayesian since

it is hard to create other coherent frameworks for automated reasoning about uncertainty”

• Industry is catching up: Bayesflow at Google, infer.NET at Microsoft, Uber has shown interest

• Still not industry-standard: expensive, not well understood.

