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Outline

Motivation: potential energy surface approximation
Machine learning for interatomic potentials (MLIAP)

Bayesian estimation of MLIAPs
Linear regression models: Spectral Neighbor Analysis Potential
(SNAP)
Importance of noise model, model error estimation
Complex (aka NN) models: UQ options, work in progress

Active learning
What do we want from prediction uncertainties
How to measure ‘extrapolation’ - lack of training data
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Overall Workflow (today’s focus on the left box)
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Target: Potential energy surface (PES) approximation

E = f (x)

x represents coordinates/descriptors
E is energy

Accurate and fast surrogates for PES to replace quantum
mechanical computations for studies requiring many PES inquiries

saddle point search, transition paths, barrier heights
rapid assessment of reaction characteristics
automate the discovery of reactive pathways
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ML Interatomic Potentials (MLIAP): supervised ML

Input
x ∈ R3N

Fingerprint
z ∈ RM

Fcn Form
fp(z) Fit Data

E

Cartesian Morse
Symm. Fcn

PIP
Zernike
Gaussian

Bispectrum

NN
GAP

Regression
Low-rank Tensor

SVM

minp ||E − fp(z)||
RMSE
MAE

Regularization
Force Field

ab initio
DFT

Partition the interatomic interaction energy into individual
contributions of the atoms Etotal =

∑N
i=1 Ei

Assume flexible functional forms of each such contribution

Function of positions of the neighboring atoms
O(100) parameters

Require the energy, forces and/or stresses predicted by a MLIAP to be close to
those obtained by a quantum mechanical model on some atomic configurations
(a.k.a. training set)
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MLIAP - desired features

Good input descriptors

Accurate, fast-to-evaluate, analytic derivatives

High-dimensional, flexible functional form

Transferable/generalizable to unseen atomic configurations

Account for physics:
invariant with respect to translation,rotation, and reflection of the
space, and also permutation of chemically equivalent atoms

Locality (depend on surrounding atoms only within a finite cut-off
radius), but remain smooth with respect to atoms entering and
leaving the local neighborhood

Equipped with uncertainty estimate
for active learning, for MD propagation, ...

ksargsy@sandia.gov ML/UQ/AL for IAPs Jun 6, 2022 7 / 28



ML for PES, (growing) literature:
uncertainty estimation is largely lacking

Weighted interpolation [Ischtwan 1994; Dowes, 2007-09; Maisuradze, 2009]

Permutationally invariant polynomials [Xie, 2010]

Gaussian processes [Bartok, Csanyi 2010-15; Mills, 2012; Rupp, 2013; Cui, 2016;

Uteva, 2017; Guan, 2018; Schmitz, 2018]

Low-rank tensor expansions [Jackle, 1996; Baranov, 2015; Rai, 2017, 2018]

Support vector machines, kernel regression [Le, 2009; Balabin, 2011;

Dral, 2017]

Neural networks (NN) [Blank, 1995; Tai No, 1997; Prudente, 1998; Lorenz, 2004;

Witkoskie, 2005; Manzhos, 2006-09; Malshe, 2008; Le, 2009] [Behler, 2010-16; Handley,

2010, 2014; Jiang, 2013; Li, 2013; Dolgirev, 2016; Khorshidi, 2016; Peterson, 2016; Carr,

2016; Kolb, 2016; Shao, 2016; Chmiela, 2017; Cubuk, 2017; McGibbon, 2017; Smith,

2017; Schutt, 2017; Yao, 2017; Hajinazar, 2017; Bereau, 2018; Lubbers, 2018; Unke,

2018; Wang, 2018; Natarajan, 2018; Zhang, 2018; Onat, 2018]
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Enabling parametric fits with uncertainties

y ≈ fc(x)
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Uncertainty estimation options

y ≈ fc(x)

Bayesian inference:

Posterior︷ ︸︸ ︷
P(c|y) ∝

Likelihood︷ ︸︸ ︷
P(y|c)

Prior︷︸︸︷
P(c)

Markov chain Monte Carlo sampling of posterior PDF

Variational methods: c ∼ N(µ,Σ) and optimize µ,Σ.
Largely, this is also called Bayesian Neural Networks
Stochastic gradient descent to minimize evidence lower bound

Ensemble methods: many flavors.
Deep ensembles
Query-by-committee
Boosting/bagging
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Focus on SNAP (Left end of the figure)

[Thompson et al., 2015] “Spectral neighbor analysis method for
automated generation of quantum-accurate interatomic
potentials”, J Comp Phys, 2015.

f (q) =

K∑
k=0

ckBk(q)

Linear expansion in parameters c.
Bayesian inference: both MCMC and analytical posterior PDFs
are feasible
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(Bayesian) Parameter Inference

Given a model f (x, c) and data yi = y(xi), calibrate parameters c.
Linear model y ≈ Ac with coefficients c
NN model y ≈ NNc(x) with weights/biases c

Bayesian least-squares fit:
p(c|y) ∝ p(y|c)p(c) ∝∏N

i=1 exp
(
− (f (xi,c)−yi)

2

2σ2
i

)

... corresponding data model yi = f (xi, c) + σi εi︸︷︷︸
N (0,1)
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SNAP uncertainty with Tantalum data set

f (q) =
∑K

k=0 ckBk(q)

Employed FitSNAP https://github.com/FitSNAP/FitSNAP
Exact analytical Bayesian answer:
c ∼ N

(
(BTB)−1BTy, σ2(BTB)−1

)
... if Gaussian i.i.d. likelihood is used

assumptions baked in likelihood form are crucial
ksargsy@sandia.gov ML/UQ/AL for IAPs Jun 6, 2022 13 / 28



Elephant in the room: model is assumed to be *the*
correct model behind data

One gets biased estimates of parameters c (crucial if the model is
physical, and/or c is propagated through other models)

More data leads to overconfident predictions (we become more
and more certain about the wrong values of the data)

More evident when there is no (observational/experimental) data
error: e.g. DFT is data, and MLIAP is model
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Posterior pushed-forward uncertainty does not capture
true discrepancy
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Capturing model error in data model (a.k.a. likelihood)

Typically requires uncertainty propagation in the likelihood computation

For linear regression, we can take some shortcuts (see next)
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Embedded Model Error for Linear Regression Models

Conventional (i.i.d. error term):

yi ≈
P∑

k=0

ckBk(x) + σiεi

Embed uncertainty in all or selected coefficients:

yi ≈
P∑

k=0

(ck + dkξk)Bk(x) =

Model︷ ︸︸ ︷
P∑

k=0

ckBk(x) +

Model Error︷ ︸︸ ︷
P∑

k=0

dkBk(x)ξk

Note:
No formal distinction between internal and external corrections, but
internal allows for interpretation and model-informed error.
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Embedded Model Error: Joint MCMC Inference

Conventional:

yi ≈
P∑

k=0

ckBk(x) + σiεi p(c|y) ∝
N∏

i=1

exp

(
−(
∑P

k=0 ckBk(xi)− yi)
2

2σ2
i

)

Embedded:

yi ≈
P∑

k=0

(ck + dkξk)Bk(x) =

Model︷ ︸︸ ︷
P∑

k=0

ckBk(x) +

Model Error︷ ︸︸ ︷
P∑

k=0

dkBk(x)ξk

p(c, d|y) ∝ p(y|c, d)︸ ︷︷ ︸
Likelihood

p(c, d)︸ ︷︷ ︸
Prior

Both likelihood and prior selection are challenging.
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Embedded Model Error: Two Approximate Likelihood
Options

yi ≈
∑P

k=0(ck + dkξk) Bk(x) =
∑P

k=0 ckBk(x) +
∑P

k=0 dkBk(x)ξk

Option 1: IID

p(c, d|y) ∝
N∏

i=1

exp

(
−(
∑P

k=0 ckBk(xi)− yi)
2

2
∑K

k=0 d2
k Bk(xi)2

)

Option 2: ABC

p(c, d|y) ∝
N∏

i=1

exp

− (
∑P

k=0 ckBk(xi)− yi)
2 + (

√∑P
k=0 d2

k B2
k(xi)− α|

∑P
k=0 ckBk(xi)− yi|)2

2ε2


Does not have to be MCMC: simply optimize the posterior for (c, d)
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Pushed forward predictive uncertainty captures the
true discrepancy from the data
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Uncertainty validation: W-ZrC Dataset

Uncertainty without model error

Uncertainty with model error
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Uncertainty validation: two examples

Conventional Embedded, IID Lik. Embedded, ABC Lik.

Ta
W

-Z
rC
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Model Error Wrapup: several challenges and choces

Embedding type, e.g. additive/multiplicative

yi ≈
P∑

k=0

(ck+dkξk)Bk(x) or yi ≈
P∑

k=0

(ck+ckdkξk)Bk(x)

Degenerate (Gaussian) likelihoods: resort to approximate
Bayesian computation (ABC) or independent (IID) assumptions
Difficult posterior PDFs for MCMC, choice of priors for embedding
parameters
Which coefficients to embed the model error in?
Connect predictive uncertainty and the residual error with an
extrapolation metric
Weighting between energies, forces and stresses
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Enabling parametric fits with uncertainties

y ≈ fc(x)
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Note the connection between variational inference and
embedded model error

Variational methods: w ∼ N(µ,Σ) and optimize µ,Σ.

Largely, this is also called Bayesian Neural Networks

Minimize evidence lower bound via SGD

Embedded model error: w ∼ N(µ,Σ) and optimize µ,Σ.

Minimize Gaussian approximation of output predictions (IID), or

Minimize statistics/moment matching criterion (ABC)

Next:
Toy example demonstrating issues of mean-field variational inference
outside training support.
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Polynomial fit: Extrapolation scenario

Order=2

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.
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Polynomial fit: Extrapolation scenario

Order=3

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.
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Polynomial fit: Extrapolation scenario

Order=4

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.
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Polynomial fit: Extrapolation scenario

Order=5

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.
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Polynomial fit: Interpolation scenario

Order=2

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.
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Polynomial fit: Interpolation scenario

Order=3

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.

ksargsy@sandia.gov ML/UQ/AL for IAPs Jun 6, 2022 27 / 28



Polynomial fit: Interpolation scenario

Order=4

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.
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Polynomial fit: Interpolation scenario

Order=5

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.
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Polynomial fit: Interpolation scenario

Order=10

True Posterior Variational Posterior

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors.

ksargsy@sandia.gov ML/UQ/AL for IAPs Jun 6, 2022 27 / 28



Summary and Future Work Thank you!

UQ and ML for interatomic potential models

Embedded model error for Bayesian inference of linear MLIAPs
Leads to data model with baked-in uncertainty
Meaningful model-error uncertainty capturing the true residual
Choices to make: priors, likelihoods, MCMC sampler, where to
embed...

Nonlinear MLIAPs, uncertainty estimation options
Bayesian inference: careful with likelihood assumptions; does not
always work
Variational methods: underestimate/homogenize the uncertainty,
parallel with embedded model error
Ensemble learning: mostly empirical, but they work!

Active learning
Anchored in uncertainty estimation, even if heuristic
Query-by-committee (QBC) shows promising results on test models
Choices to make: query strategy, UQ method, metric of ‘newness’...
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Additional Material



Uncertainty-enabling wrappers over PyTorch modules

MCMC struggles with complex NNs; VI underestimates;
Ensembles do well



Uncertainty-enabling wrappers over PyTorch modules

MCMC struggles with complex NNs; VI underestimates;
Ensembles do well



Training set selection is crucial

Configurations chosen for
training data influence results
Example: W-H
(tungsten/hydrogen) IAPs
Initial IAPs resulted in
hydrogen clusters in bulk
tungsten, which should not
occur
Additional training data was
generated and put into the
training set
Including these specific
configurations prevented
unphysical hydrogen
clustering

Results from Mary Alice Cusentino (SNL), using LAMMPS software.



Active Learning:
selection of training configurations

[B. Settles, “Active learning literature survey”, Computer Sciences Technical Report 1648,

University of Wisconsin-Madison, 2009]



Active Learning:
selection of training configurations

Greater test accuracy with fewer training samples

Two flavors of the challenge:
Interpolation: developing a reliable
problem-specific MLIAP that would
accurately interpolates within the training
domain is nontrivial

Extrapolation: prediction outside the training
domain is even harder

Key: query strategy, whether to query high-fidelity quantum
mechanical (QM) simulation or not.

If such decision can be made reliably, then one does not need to
start with a very good training set



Query Strategies:
almost all rely on some form of uncertainty estimate

Uncertainty sampling: an active learner queries the instances
about which it is least certain how to label.
Query-by-committee: committee of competing models, and pick
a query about which they most disagree. Need a measure of
disagreement.
Expected model change: which query would lead to greatest
model change, e.g. largest gradient length.
Variance Reduction and Fisher Information Ratio: minimizing
the variance component of generalization error estimate (via
Fisher Information)
Estimated error reduction: Estimate the expected future error
that would result if some new instance x is labeled and added to
training set, and then select the instance that minimizes that
expectation.



Optimality options

Straight out of wiki...



Active Learning: current workflow



Active Learning: Query Options



Demonstration of AL

Selecting one point at a time given
the current uncertainty estimate

Naı̈ve approach Active approach

Next: how to reliably estimate uncertainty?


video_naive.mp4
Media File (video/mp4)


video_adapt.mp4
Media File (video/mp4)



Query-by-Committee (QBC): algorithm sketch



Query-by-Committee (QBC): algorithm outline

Start with a large pool of P unlabeled points

Select a training set of N points from the pool

Launch K learners, each with fN randomly-chosen training points
Random sampling with replacement
Selection of fraction f determines data size per learner

– diversity vs data size tradeoff

Evaluate the learners’ performance at all points in the pool

Select M points from the pool, having highest ‘disagreement’, & add
them to the training set

M choice, size of batch added per query, low error vs optimal choice
K-means clustering to discover geometry of selected data
Distribute data from clusters evenly among learners

– Add fM points per learner with replacement

Re-train, and repeat query to evaluate learners performance on
prediction of unlabeled data in pool



QBC: Griewank test function

f (x) = 1+
∑d

i=1
x2

i
4000−

∏d
i=1 cos

(
xi√

i

)

Efficiency of active learning improves with higher dimension.



QBC: Sine test function

f (x) = sin
(∑d

i=1 xi

)

In low-d, large pool size causes newly selected points to cluster.
Potential solution: sample according to PDF e−std(x) to concentrate
new points near high uncertainty region, but select elsewhere, too.



Literature

Model error embedding
[Sargsyan et al., 2019] “Embedded model error representation for Bayesian model
calibration”, Int. J. Uncertain. Quantif., 9(4), 2019.

MLIAPs
[Thompson et al., 2015] “Spectral neighbor analysis method for automated
generation of quantum-accurate interatomic potentials”, J Comp Phys, 2015.
[J. Behler, 2014] “Representing potential energy surfaces by high-dimensional
neural network potentials”, J. Phys.: Condens. Matter, 26, 2014.

Active learning
[B. Settles, 2009] “Active learning literature survey”, Comp Sci Tech Report 1648,
University of Wisconsin-Madison, 2009.

Active learning for MLIAPs
[E. Podryabinkin, A. Shapeev, 2017] “Active learning of linearly parametrized
interatomic potentials”, Comp Mat Sci, 140, 2017.
[J. Vandermause et al., 2020 ] “On-the-fly active learning of interpretable Bayesian
force fields for atomistic rare events”, npj Computational Materials, 6, 2020.


