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Outline

UQ for machine learning interatomic potentials (MLIAP)
... for uncertainty propagation
... for active learning
... for model selection

Bayesian approach
More focus on linear regression models:
Spectral Neighbor Analysis Potential (SNAP)
Importance of noise model, embedded model error construction
Relation to variational inference
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ML Interatomic Potentials (MLIAP): supervised ML
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Partition the interatomic interaction energy into individual
contributions of the atoms Etotal =

∑N
i=1 Ei

Assume flexible functional forms of each such contribution

Function of positions of the neighboring atoms
O(100) parameters

Require the energy, forces and/or stresses predicted by a MLIAP to be close to
those obtained by a quantum mechanical model on some atomic configurations
(a.k.a. training set)
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MLIAP - desired features

Good input descriptors

Accurate, fast-to-evaluate, analytic derivatives

High-dimensional, flexible functional form

Transferable/generalizable to unseen atomic configurations

Account for physics:
invariant with respect to translation,rotation, and reflection of the
space, and also permutation of chemically equivalent atoms

Locality (depend on surrounding atoms only within a finite cut-off
radius), but remain smooth with respect to atoms entering and
leaving the local neighborhood

Equipped with uncertainty estimate
for active learning, for MD propagation, ...
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Enabling parametric fits with uncertainties

y ≈ fc(x)
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Focus on SNAP (Left end of the figure)

[Thompson et al., 2015] “Spectral neighbor analysis method for
automated generation of quantum-accurate interatomic
potentials”, J Comp Phys, 2015.

f (q) =

K∑
k=0

ckBk(q)

Linear expansion in parameters c.
Bayesian inference: both MCMC and analytical posterior PDFs
are feasible
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(Bayesian) Parameter Inference

Given a model f (x, c) and data yi = y(xi), calibrate parameters c.
Linear model f (x, c) = Bc with coefficients c
NN model f (x, c) = NNc(x) with weights/biases c

Bayesian least-squares fit:
p(c|y) ∝ p(y|c)p(c) ∝∏N

i=1 exp
(
− (f (xi,c)−yi)

2

2σ2

)

... corresponding data model yi = f (xi, c) + σ εi︸︷︷︸
N (0,1)

Exact answer for linear models: c ∼ N
(
(BTB)−1BTy, σ2(BTB)−1

)
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SNAP uncertainty with Tantalum data set

f (q) =
∑K

k=0 ckBk(q)

Employed FitSNAP https://github.com/FitSNAP/FitSNAP

Assumptions baked in likelihood form are crucial!
i.i.d. gaussian noise with constant σ is not well founded.
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Elephant in the room: model is assumed to be *the*
correct model behind data

One gets biased estimates of parameters c (crucial if the model is
physical, and/or c is propagated through other models)

More data leads to overconfident predictions (we become more
and more certain about the wrong values of the data)

More evident when there is no (observational/experimental) data
error: e.g. DFT is data, and MLIAP is model
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Posterior pushed-forward uncertainty does not capture
true discrepancy
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Capturing model error in data model (a.k.a. likelihood)

Typically requires uncertainty propagation in the likelihood computation

For linear regression, we can take some shortcuts (see next)
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Embedded Model Error for Linear Regression Models

Conventional (i.i.d. error term):

yi ≈
P∑

k=0

ckBk(xi) + σiεi

Embed uncertainty in all or selected coefficients:

yi ≈
P∑

k=0

(ck + dkξk)Bk(xi) =

Model︷ ︸︸ ︷
P∑

k=0

ckBk(xi) +

Model Error︷ ︸︸ ︷
P∑

k=0

dkBk(xi)ξk

Note:
No formal distinction between internal and external corrections:
but the error is now model-informed.

ksargsy@sandia.gov UQ for MLIAPs Jun 23, 2022 13 / 25



Joint MCMC inference of model parameters and model-error parameters

Conventional:

yi ≈
P∑

k=0

ckBk(xi) + σiεi p(c|y) ∝
N∏

i=1

exp

(
−(
∑P

k=0 ckBk(xi)− yi)
2

2σ2
i

)

Embedded:

yi ≈
P∑

k=0

(ck + dkξk)Bk(xi) =

Model︷ ︸︸ ︷
P∑

k=0

ckBk(xi) +

Model Error︷ ︸︸ ︷
P∑

k=0

dkBk(xi)ξk

p(c, d|y) ∝ p(y|c, d)︸ ︷︷ ︸
Likelihood

p(c, d)︸ ︷︷ ︸
Prior

Note:
Both likelihood and prior selection are challenging.
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Embedded Model Error: Two Approximate Likelihood Options

yi ≈
∑P

k=0(ck + dkξk) Bk(xi) =
∑P

k=0 ckBk(xi) +
∑P

k=0 dkBk(xi)ξk

Option 1: IID

p(c, d|y) ∝
N∏

i=1

exp

(
−(
∑P

k=0 ckBk(xi)− yi)
2

2
∑K

k=0 d2
k Bk(xi)2

)

Option 2: ABC

p(c, d|y) ∝
N∏

i=1

exp

− (
∑P

k=0 ckBk(xi)− yi)
2 + (

√∑P
k=0 d2

k B2
k(xi)− α|

∑P
k=0 ckBk(xi)− yi|)2

2ε2



Note:
Does not have to be MCMC: simply optimize the posterior for (c, d)
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Pushed forward predictive uncertainty
captures the true discrepancy from the data
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Uncertainty validation: W-ZrC Dataset

Uncertainty without model error

Uncertainty with model error
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Uncertainty validation: two examples

Conventional Embedded, IID Lik. Embedded, ABC Lik.

Ta
W

-Z
rC
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Model Error Wrapup: several challenges and choices

Embedding type, e.g. additive/multiplicative

yi ≈
P∑

k=0

(ck+dkξk)Bk(xi) or yi ≈
P∑

k=0

(ck+ckdkξk)Bk(xi)

Degenerate (Gaussian) likelihoods: resort to approximate
Bayesian computation (ABC) or independent (IID) assumptions
Difficult posterior PDFs for MCMC, choice of priors for embedding
parameters
Which coefficients to embed the model error in?
Connect predictive uncertainty and the residual error with an
extrapolation metric
Weighting between energies, forces and stresses
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Variational inference is a compromise between
Bayesian and Empirical approaches
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Variational inference in a nutshell

KL(p1||p2) =
∫

ln
(

p1(x)
p2(x)

)
p1(x)dx

e.g. Mean-Field Variational Inference (MFVI): ansatz
c ∼ N (µ,diag(v)) and find best (µ, v), i.e.

minimize Kullback-Leibler distance to the full Bayesian posterior,
argmin(µ,v)KL(N (µ,diag(v))||N (µ0,Σ)),

replaces sampling (MCMC) problem with an optimization problem.
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Note the connection between variational inference and
embedded model error

Variational methods: c ∼ N(µ,Σ) and optimize µ,Σ.

In NN context, this is largely called Bayesian Neural Networks

Minimize Kullback-Leibler distance via Stoch. Gradient Descent

Embedded model error: c ∼ N(µ,Σ) and optimize µ,Σ.

Minimize Gaussian approximation of output predictions (IID), or

Minimize statistics/moment matching criterion (ABC)

Next:
Overparameterized linear regression (mimicking NN) challenges mean-field
variational inference outside training support.
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Polynomial fit: Extrapolation scenario

Order=2

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Extrapolation scenario

Order=3

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Extrapolation scenario

Order=4

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Extrapolation scenario

Order=5

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Interpolation scenario

Order=2

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Interpolation scenario

Order=3

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Interpolation scenario

Order=4

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Interpolation scenario

Order=5

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Polynomial fit: Interpolation scenario

Order=10

Full Bayesian Posterior Variational Posterior
N (µ,Σ) N (µ, 1/diag(Σ−1))

Variational posterior predictions heavily underestimate
both interpolative and extrapolative errors,

in the overparameterized regimes.
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Summary Thank you!

Bayesian fit of parameterized MLIAPs
Noise assumptions are crucial

Embedded model error
Statistical correction inside the model: joint inference of model
parameters and the correction
Leads to model-driven noise model
Meaningful model-error uncertainty capturing the true residual
A few shortcuts in linear regression models
Choices to make: priors, approximate likelihoods, MCMC sampler,
where to embed...

Variational inference
Approximate alternative to MCMC for nonlinear, complex models
Underestimates the uncertainty for overparameterized models:
dangerous when extrapolating!
Mechanically similar to embedded model error, except the
optimization objective/method (and, potentially, the interpretation!)
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Additional Material



Uncertainty Propagation through MD

PC intro setup; SNAP coefficients form a first order
Gauss-Hermite Polynomial Chaos (PC)

E ≈
P∑

k=0

(ck + dkξk︸ ︷︷ ︸
c̃

) Bk(x)

Sample SNAP coefficients
Evaluate MD QoIs
Build PC for MD QoIs, possibly multilevel/multifidelity
Evaluate PDF/statistics of QoIs
Challenges: high-d input, noisy MD simulations



Uncertainty-enabling wrappers over PyTorch modules

MCMC struggles with complex NNs; VI underestimates;
Ensembles do well



Uncertainty-enabling wrappers over PyTorch modules

MCMC struggles with complex NNs; VI underestimates;
Ensembles do well
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