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Outline

• Interatomic potentials as building blocks to approximate potential energy surfaces

• Active learning and need for uncertainty estimation in MLIAP construction 

• Machine learning interatomic potentials (MLIAP) - a supervised ML problem 

• (Bayesian) MLIAP hinges on proper assumptions for model-data discrepancies 

• Embedded model error approach for uncertainty estimation in MLIAPs



Interatomic Potentials
• Object of interest: potential energy  of a system defined by a configuration  , E x

   where  encapsulates coordinates of all atoms in the system x

• Typically additive form:     using local environmentsE(x) = Eref + ∑
i

E(xi) + . . .



Ingredients of MLIAPs   (supervised ML problem)

Cartesian Morse

Symm. Fcns


PIP

Bispectrum


ACE

…

SVM

NN

GP


LR Tensor

Lin. Regression


…

min
p

| |E − fp(z) | |

Ab initio Density Functional Theory

include Force, Stress

• Training data  for  and 


• Input representation, aka fingerprint, aka descriptor    


• Parametrized functional form of the approximation class     


• Loss function:                                    + regularization

(xi, Ei) i = 1,…, S xi ∈ R3N

x → z(x)
fp(z)

min
p

S

∑
i=1

[Ei − fp(zi)]2



State-of-the-art: largely manual and lacking systematic UQ 

✦  Good training set selection: active learning


✦  Fingerprint choice: invariances, symmetries


✦  Functional form choice: model selection


✦  Loss function: regularization, weighting energies and forces

✦  Find reaction pathways, saddle points


✦  Pipe the IAPs to MD simulations

MLIAP Construction

MLIAP Usage



Big Picture

Main focus today:  

Bayesian inference of IAPs, model errors



Active Learning: motivation for UQ
• Choose the training samples adaptively


• Achieve greater accuracy with fewer training samples 


• In conventional ML, minimize human effort of labeling images 


• For us, minimize the number of ab initio calculations


• (aka optimal experimental/computational design)

Detect and query extrapolative (high-uncertainty?) 
configurations on-the-fly and get DFT data for those. 


Key: query strategy, whether to query DFT or not. If 
such decision can be made reliably, then one does 
not need to start with a very good training set.



Equipping parametric fits with uncertainties



Equipping parametric fits with uncertainties

SNAP

A.P. Thompson et al. “Spectral neighbor analysis method for automated generation of 

quantum-accurate interatomic potentials”, Journal of Computational Physics, 

285(15), pp. 316-330, 2015. https://github.com/FitSNAP



Spectral neighbor analysis potential (SNAP) details

•   Uses bispectrum as fingerprints: 


- uses hyper spherical harmonics


- respects rotational, permutational, translational


    symmetries/invariances


- incorporates forces and stresses as well 


- tunable complexity/order

•   Uses linear regression as model form: 


- built on hyper spherical harmonics basis functions


- generalized to quadratic form as well

M. Wood and A. Thompson , 

“Extending the accuracy of the 

SNAP interatomic potential form”, 

Journal of Chemical Physics, 148, 2018.

E(x) ≈ ∑
k

ckBk(x)



(Bayesian) Parameter Inference
✦   Given a model    and data   , calibrate parameters  .f(x, c) yi = y(xi) c

Linear model    with coefficients  y ≈ Ac c

NN model    with weights/biases  y ≈ NNc(x) c

✦    Bayesian least-squares fit: p(c |y) ∝ p(y |c)p(c) ∝
N

∏
i=1

exp (−
( f(xi, c) − yi)2

2σ2
i )

yi = f(xi, c) + σiϵiCorresponding data model



                          Elephant in the room:  
model is assumed to be *the* correct model behind data

yi = f(xi, c) + σiϵi

Model

Truth
Model  Truth≠

Ignoring model error hurts in a few ways:

✦ One gets biased estimates of parameters  (crucial if the model is 
physical, and/or  is propagated through other models)


✦ More data leads to overconfident predictions (we become more and more 
certain about the wrong values of the data)

c
c

✦ More evident when there is no (observational/experimental) data error: 
e.g. DFT is data, and MLIAP is model

Data err.



Posterior uncertainty does not capture true discrepancy

yi ≈
3

∑
k=0

ckBk(x)

Cubic fit

More data leads to  
overconfident prediction

y(x) = sin4(2x − 0.3)
Synthetic data



Capturing Model Error in Likelihood (a.k.a. Data Model) 

•  Sargsyan, Najm, Ghanem, “On the Statistical Calibration of Physical Models”. 
Int. J. Chem. Kinet., 47: 246-276, 2015.
•  Sargsyan, Huan, Najm, “Embedded Model Error Representation for Bayesian Model Calibration”. 
Int. J. Uncert. Quantif., 9(4): 365-394, 2019. 

External correction 
(Kennedy-O’Hagan):

Internal correction  
(embedded model error):

•  Kennedy, O’Hagan, “Bayesian Calibration of Computer Models”. 
J Royal Stat Soc: Series B (Stat Meth), 63: 425-464, 2001.

yi = f(xi, c) + δ(xi) + σiϵi

yi = f(xi, c + δ(xi)) + σiϵi

•  Allows meaningful usage of calibrated model

•  ‘Leftover’ noise term even with no data error

•  Respects physics (not too relevant in our context)



Embedded Model Error for Linear Regression Models

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

‘Embed’ uncertainty in 

all (or selected) coefficients Model error 

(still Gaussian, but correlated, 

and model-informed)

Model

Note: 
No formal distinction between 


internal and external corrections, 

but internal allows for interpretation 


and  model-informed error



Embedded Model Error: likelihood choice is challenging

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

Classical data model
p(c |y) ∝

N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2σ2
i

Embedded model error

MCMC sampling of c

p(c, d |y) ∝
N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2∑K
k=0 d2

k Bk(xi)2

MCMC sampling of 

or 


simply optimize the posterior for 

c, d

c, d

Option 1 (IID)



Embedded Model Error: likelihood choice is challenging

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

Classical data model
p(c |y) ∝

N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2σ2
i

Embedded model error

MCMC sampling of c

p(c, d |y) ∝
N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2 + ( ∑P
k=0 d2

k B2
k (xi) − α |∑P

k=0 ckBk(xi) − yi | )2

2ϵ2

Option 2 (ABC)



Pushed forward predictive uncertainty captures  
the true discrepancy from  the data

yi ≈
3

∑
k=0

ckBk(x)

Cubic fit

y(x) = sin4(2x − 0.3)

Synthetic data

Classical case Model error, IID likelihood Model error, ABC likelihood



Uncertainty validation: W-ZrC Dataset

Uncertainty with model error

Uncertainty without model error



Uncertainty validation: two examples
Classical case Model error, IID likelihood Model error, ABC likelihood

Ta
W

-Z
rC



Several challenges/choices
• Embedding type: e.g. 


additive  or multiplicative  yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) yi ≈
P

∑
k=0

(ck + ckdkξk) Bk(x)

• Degenerate (Gaussian) likelihoods: resort to 

approximate Bayesian computation (ABC) or independent (IID) assumptions

• Which coefficients to embed the model error in?
• Connect predictive uncertainty and the residual error with an extrapolation metric
• Weighting between energies, forces and stresses

• Difficult posterior PDFs for MCMC, choice of priors for embedding parameters



Active Learning: current workflow

Vienna ab initio 

sim package, vast.at

https://github.com/FitSNAP/FitSNAP

http://vast.at


Active Learning: Query Options

• Launch K learners, each with fN training points (f=0.8) 

• Evaluate the learners’ performance at all points in the pool 

• Select training points from the pool that correspond to the 


highest ’disagreement’ and add them to the training set 

Query-by-Committee (QBC) Bayesian Uncertainty
• Launch a single learner

• Evaluate its performance at all points in the pool 

• Select training points from the pool that correspond to the 


highest posterior uncertainty and add them to the training set 



Summary
• Embedded model error for Bayesian inference of MLIAPs

• Meaningful model-error uncertainty capturing the true residual

• Choices to make: priors, likelihoods, MCMC sampler, where to embed…

• Active learning informed by uncertain predictions (Bayesian, variational, QBC)

• Leads to data model with baked-in uncertainty

• Anchored in uncertainty estimation, even if heuristic
• Promising initial results

• Choices to make: query strategy, UQ method, metric of ‘newness’…


