Quantification and Propagation of Uncertainties in Machine Learning Interatomic Potentials for Molecular Dynamics

Model errors and active learning

SIAM UQ April 15, 2022

Khachik Sargsyan, Logan Williams, Katherine Johnston, Habib Najm (SNL-CA)

Sandia National Laboratories

Acknowledgements:

Aidan Thompson, Mitchell Wood, Mary Alice Cusentino, Ember Sikorski

Funded by DOE ASCR / FES

- Interatomic potentials as building blocks to approximate potential energy surfaces
- Machine learning interatomic potentials (MLIAP) a supervised ML problem
- Active learning and need for uncertainty estimation in MLIAP construction
- (Bayesian) MLIAP hinges on proper assumptions for model-data discrepancies
- Embedded model error approach for uncertainty estimation in MLIAPs

Interatomic Potentials

- Object of interest: potential energy E of a system defined by a configuration x, where x encapsulates coordinates of all atoms in the system
- Typically additive form: $E(x) = E_{ref}$

$$f_f + \sum_i E(x_i) + \dots$$
 using local environments

ents

- Training data (x_i, E_i) for i

- ullet

Ingredients of MLIAPs (supervised ML problem)

$$= 1, \dots, S$$
 and $x_i \in R^{3N}$

Input representation, aka fingerprint, aka descriptor $x \to z(x)$ • Parametrized functional form of the approximation class $f_p(z)$ Loss function: $\min_{p} \sum_{i=1}^{p} [E_i - f_p(z_i)]^2 + regularization$

State-of-the-art: largely manual and lacking systematic UQ

- Loss function: regularization, weighting energies and forces

- Find reaction pathways, saddle points
- Pipe the IAPs to MD simulations

Main focus today:

Bayesian inference of IAPs, model errors

Big Picture

Active Learning: motivation for UQ

- Choose the training samples adaptively
- Achieve greater accuracy with fewer training samples
- In conventional ML, minimize human effort of labeling images
- For us, minimize the number of ab initio calculations
- (aka optimal experimental/computational design)

[B. Settles, "Active learning literature survey", Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009]

- Detect and query extrapolative (high-uncertainty?) configurations on-the-fly and get DFT data for those.
- Key: query strategy, whether to query DFT or not. If such decision can be made reliably, then one does not need to start with a very good training set.

Equipping parametric fits with uncertainties

Equipping parametric fits with uncertainties

A.P. Thompson et al. "Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials", *Journal of Computational Physics*, 285(15), pp. 316-330, 2015. *https://github.com/FitSNAP*

Spectral neighbor analysis potential (SNAP) details

- Uses **bispectrum** as fingerprints:
- uses hyper spherical harmonics
- respects rotational, permutational, translational symmetries/invariances
- incorporates forces and stresses as well
- tunable complexity/order

- Uses **linear regression** as model form:
- built on hyper spherical harmonics basis functions
- generalized to quadratic form as well

M. Wood and A. Thompson, "Extending the accuracy of the SNAP interatomic potential form", Journal of Chemical Physics, 148, 2018.

(Bayesian) Parameter Inference Given a model f(x, c) and data $y_i = y(x_i)$, calibrate parameters c. Linear model $y \approx Ac$ with coefficients cNN model $y \approx NN_c(x)$ with weights/biases c

Bayesian least-squares fit: p(

Corresponding data model

$$(c \mid y) \propto p(y \mid c)p(c) \propto \prod_{i=1}^{N} \exp\left(-\frac{(f(x_i, c) - y_i)^2}{2\sigma_i^2}\right)$$

$$y_i = f(x_i, c) + \sigma_i \epsilon_i$$

Elephant in the room: model is assumed to be *the* correct model behind data

Model Data err. $y_i = f(x_i, c) + \sigma_i \epsilon_i$ Truth

 \bullet One gets biased estimates of parameters c (crucial if the model is physical, and/or c is propagated through other models)

certain about the wrong values of the data)

More evident when there is no (observational/experimental) data error: e.g. DFT is data, and MLIAP is model

Model \neq Truth

- Ignoring model error hurts in a few ways:
- More data leads to overconfident predictions (we become more and more)

Posterior uncertainty does not capture true discrepancy

More data leads to overconfident prediction

Capturing Model Error in Likelihood (a.k.a. Data Model)

 Kennedy, O'Hagan, "Bayesian Calibration of Computer Models". J Royal Stat Soc: Series B (Stat Meth), 63: 425-464, 2001.

Internal correction Allows meaningful usage of calibrated model (embedded model error): 'Leftover' noise term even with no data error

- Sargsyan, Najm, Ghanem, "On the Statistical Calibration of Physical Models". Int. J. Chem. Kinet., 47: 246-276, 2015.
- Int. J. Uncert. Quantif., 9(4): 365-394, 2019.

$$y_i = f(x_i, c) + \delta(x_i) + \sigma_i \epsilon_i$$

$$y_i = f(x_i, c + \delta(x_i)) + \sigma_i \epsilon_i$$

• Respects physics (not too relevant in our context)

Sargsyan, Huan, Najm, "Embedded Model Error Representation for Bayesian Model Calibration".

Embedded Model Error for Linear Regression Models

'Embed' uncertainty in all (or selected) coefficients k=0

Note: No formal distinction between internal and external corrections, but internal allows for interpretation and model-informed error

Model

Model error

Embedded Model Error: likelihood choice is challenging

Embedded Model Error: likelihood choice is challenging

Pushed forward predictive uncertainty captures the true discrepancy from the data

Synthetic data

 $y(x) = \sin^4(2x - 0.3)$

Classical case

Model error, IID likelihood

Model error, ABC likelihood

Uncertainty validation: W-ZrC Dataset

Uncertainty without model error

Uncertainty with model error

Uncertainty validation: two examples

Classical case

Model error, IID likelihood Model error, ABC likelihood

W-ZrC

D

Several challenges/choices

- Embedding type: e.g. k=0
- Degenerate (Gaussian) likelihoods: resort to approximate Bayesian computation (ABC) or independent (IID) assumptions

- Difficult posterior PDFs for MCMC, choice of priors for embedding parameters Which coefficients to embed the model error in?
- Connect predictive uncertainty and the residual error with an extrapolation metric
- Weighting between energies, forces and stresses

<u>additive</u> $y_i \approx \sum_{k=1}^{\infty} (c_k + d_k \xi_k) B_k(x)$ or <u>multiplicative</u> $y_i \approx \sum_{k=1}^{\infty} (c_k + c_k d_k \xi_k) B_k(x)$ k=0

Active Learning: current workflow

https://github.com/FitSNAP/FitSNAP

Active Learning: Query Options

Query-by-Committee (QBC)

- Launch K learners, each with fN training points (f=0.8) ullet
- Evaluate the learners' performance at all points in the pool •
- Select training points from the pool that correspond to the \bullet highest 'disagreement' and add them to the training set

Bayesian Uncertainty

- Launch a single learner
- Evaluate its performance at all points in the pool
- Select training points from the pool that correspond to the highest posterior uncertainty and add them to the training set

- Embedded model error for Bayesian inference of MLIAPs
 - Leads to data model with baked-in uncertainty
 - Meaningful model-error uncertainty capturing the true residual
 - Choices to make: priors, likelihoods, MCMC sampler, where to embed...

- Active learning informed by uncertain predictions (Bayesian, variational, QBC) Anchored in uncertainty estimation, even if heuristic
- - Promising initial results
 - Choices to make: query strategy, UQ method, metric of 'newness'...

Summary

