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FusMatML Project Overview

•    Advance the state-of-the-art in atomistic modeling of plasma-materials interactions 
connecting ab initio calculations, large-scale molecular dynamics simulations, and 
experimental characterization to impact fusion energy research.


•    Generate a new class of machine learning interatomic potentials (MLIAP) 
systematically optimized to robustly measure and control QoI uncertainty for the complex 
structural and chemical environments required for plasma-materials interactions

• PI: Aidan Thompson (SNL-NM)


• UQ Thrust: Habib Najm, Khachik Sargsyan, Logan Williams (SNL-CA)

Funded by DOE ASCR / FES

•   Deploy novel ML/UQ to advance the development of robust MLIAPs



Big Picture



Big Picture

Bayesian inference of IAPs, model errors
Active learning
Propagation of IAP uncertainties through MD

Most of this talk
Some preliminaries

One slide



Interatomic Potentials
• Object of interest: potential energy  of a system defined by a configuration  , E x

   where  encapsulates coordinates of all atoms in the system x

• Typically additive form.     using local environmentsE(x) = Eref + ∑
i

E(xi) + . . .



Ingredients of MLIAPs

Cartesian Morse

Symm. Fcns


PIP

Bispectrum


ACE

…

SVM

NN

GP


LR Tensor

Lin. Regression


…

min
p

| |E − fp(z) | |

Ab initio DFT

include Force, Stress

• Training data  for  and 


• Input representation, aka fingerprint, aka descriptor    


• Parametrized functional form of the approximation class     


• Loss function:                                    + regularization

(xi, Ei) i = 1,…, S xi ∈ R3N

x → z(x)
fp(z)

min
p

S

∑
i=1

[Ei − fp(zi)]2



State-of-the-art: largely manual and lacking systematic UQ 

✦  Good training set selection: active learning


✦  Fingerprint choice: invariances, symmetries


✦  Functional form choice: model selection


✦  Loss function: regularization, weighting energies and forces

✦  Find reaction pathways, saddle points


✦  Pipe the IAPs to MD simulations

MLIAP Construction

MLIAP Usage



Equipping parametric fits with uncertainties



Equipping parametric fits with uncertainties

SNAP



Spectral neighbor analysis potential (SNAP) details
A.P. Thompson et al. “Spectral neighbor analysis 

method for automated generation of 

quantum-accurate interatomic potentials”, 

Journal of Computational Physics, 

285(15), pp. 316-330, 2015.

•   Uses bispectrum as fingerprints: 


- built on hyper spherical harmonics basis functions


- respects rotational, permutational, translational invariances


- incorporates forces and stresses as well 


- tunable complexity/order

•   Uses linear regression as model form: 


- built on hyper spherical harmonics basis functions


- generalized to quadratic form as well

M. Wood and A. Thompson , 

“Extending the accuracy of the 

SNAP interatomic potential form”, 

Journal of Chemical Physics, 148, 2018.

E(x) ≈ ∑
k

ckBk(x)



(Bayesian) Parameter Inference
✦   Given a model    and data   , calibrate parameters  .f(x, c) yi = y(xi) c

Linear model    with coefficients  y ≈ Ac c

NN model    with weights/biases  y ≈ NNc(x) c

✦    Weighted least-squares fit: c* = argminc

N

∑
i=1

w2
i (f(xi, c) − yi)2

✦    Bayesian equivalent: p(c |y) ∝ p(y |c)p(c) ∝
N

∏
i=1

exp (−
( f(xi, c) − yi)2

2σ2
i )



Crucial piece: assumptions for  
likelihood, or data model, or noise model

✦ Likelihood contains data noise modeling assumptions, 


               e.g.         , where yi = f(xi, c) + σiϵi ϵi ∼ 𝒩(0,1)

p(c |y) ∝ p(y |c)p(c) ∝
N

∏
i=1

exp (−
( f(xi, c) − yi)2

2σ2
i )

Model DataPosterior PDF

Likelihood

Data Model

✦ Prior contains previous knowledge or regularization 


Prior PDF



Linear Models: luxury of closed-form posteriors 

✦   Gaussian likelihood with fixed σ

p(y |c) ∝
1

σN

N

∏
i=1

exp (−
(Ac)i − yi)2

2σ2 )

p(c |y) ∝ p(y |c)p(c) ∼ 𝒩 ((AT A)−1ATy, σ2(AT A)−1)

✦    Leads to Gaussian posterior PDF

✦    As well as Gaussian push-forward and posterior predictive

 
f(x, c) = Ac



Linear Models: unknown  σ
✦   Gaussian likelihood with inferred σ p(y |c, σ2) ∝

1
σN

N

∏
i=1

exp (−
(Ac)i − yi)2

2σ2 )

p(c, σ2 |y) ∝ p(y |c, σ2)p(c, σ2) ∼ NIG

✦    Leads to normal-inverse-gamma posterior PDF

✦    … but only its marginals are interesting/useful

p(c |y, σ2) ∼ 𝒩 ((AT A)−1ATy, σ2(AT A)−1)

p(σ2 |y) ∼ IG ( N − K
2

,
N − K

2
̂σ2) p(c |y) ∼ St ((AT A)−1ATy, σ2(AT A)−1, N − K)

Effective stdv. = residual RMSE



                          Elephant in the room:  
model is assumed to be *the* correct model behind data

yi = f(xi, c) + σiϵi

Model

Truth
Model  Truth≠

Ignoring model error hurts in a few ways:

✦ One gets biased estimates of parameters  (crucial if the model is 
physical, and/or  is propagated through other models)


✦ More data leads to overconfident predictions (we become more and more 
certain about the wrong values of the data)

c
c

✦ More evident when there is no (observational/experimental) data error: 
e.g. DFT is data, and IAP is model

Data err.



Posterior uncertainty does not capture true discrepancy

yi ≈
3

∑
k=0

ckBk(x)

Cubic fit

More data leads to  
overconfident prediction

y(x) = sin4(2x − 0.3)
Synthetic data



Capturing Model Error in Likelihood (a.k.a. Data Model) 

•  Sargsyan, Najm, Ghanem, “On the Statistical Calibration of Physical Models”. 
Int. J. Chem. Kinet., 47: 246-276, 2015.
•  Sargsyan, Huan, Najm, “Embedded Model Error Representation for Bayesian Model Calibration”. 
Int. J. Uncert. Quantif., 9(4): 365-394, 2019. 

External correction 
(Kennedy-O’Hagan):

Internal correction  
(embedded model error):

•  Kennedy, O’Hagan, “Bayesian Calibration of Computer Models”. 
J Royal Stat Soc: Series B (Stat Meth), 63: 425-464, 2001.

yi = f(xi, c) + δ(xi) + σiϵi

yi = f(xi, c + δ(xi)) + σiϵi

•  Allows meaningful usage of calibrated model

•  ‘Leftover’ noise term even with no data error

•  Respects physics (not too relevant in our context)



Embedded Model Error for Linear Regression Models

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

‘Embed’ uncertainty in 

all (or selected) coefficients Model error 

(still Gaussian, but correlated, 

and model-informed)

Model

Note: 
No formal distinction between 


internal and external corrections, 

but internal allows for interpretation 


and  model-informed error



Embedded Model Error: likelihood options

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

Classical data model
p(c |y) ∝

N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2σ2
i

Embedded model error

MCMC sampling of c

p(c, d |y) ∝
N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2∑K
k=0 d2

k Bk(xi)2

MCMC sampling of 

or 


simply optimize the posterior for 

c, d

c, d

Option 1 (IID)



Embedded Model Error: likelihood options

yi ≈
P

∑
k=0

ckBk(x) + σiϵi

yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) =
P

∑
k=0

ckBk(x) +
P

∑
k=0

dkBk(x)ξk

Classical data model
p(c |y) ∝

N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2

2σ2
i

Embedded model error

MCMC sampling of c

p(c, d |y) ∝
N

∏
i=1

exp −
(∑P

k=0 ckBk(xi) − yi)2 + ( ∑P
k=0 d2

k B2
k (xi) − α |∑P

k=0 ckBk(xi) − yi | )2

2ϵ2

Option 2 (ABC)



Pushed forward predictive uncertainty captures  
the true discrepancy from  the data

yi ≈
3

∑
k=0

ckBk(x)

Cubic fit

y(x) = sin4(2x − 0.3)

Synthetic data

Classical case Model error, IID likelihood Model error, ABC likelihood



W-ZrC Dataset

Uncertainty with model error

Uncertainty without model error



Several challenges/choices
• Embedding type: e.g. 


additive  or multiplicative  yi ≈
P

∑
k=0

(ck + dkξk) Bk(x) yi ≈
P

∑
k=0

(ck + ckdkξk) Bk(x)

• Degenerate (Gaussian) likelihoods: resort to 

approximate Bayesian computation (ABC) or independent (IID) assumptions

• Which coefficients to embed the model error in?
• Connect predictive uncertainty and the residual error with an extrapolation metric
• Weighting between energies, forces and stresses

• Difficult posterior PDFs for MCMC, choice of priors for embedding parameters

• Major challenge: data sizes are large, linear algebra chokes



Equipping parametric fits with uncertainties

PyTorch Wrapper Library, QUINNFitSNAP Solvers, incl. model error



QUINN: PyTorch Wrappers for UQ

• The right thing to do, but 
extremely challenging

• Practically unusable for 
complex models

• Practically feasible

• Many hyperparameters to tune

• Does not represent extrapolative 
uncertainties well

• Heuristic, unfortunately….
• … but works best for 
complex models

Option 1: MCMC

Usage:

Option 2: Variational Inference Option 3: Ensembling

• Query-by-Committee (QBC)



Active Learning: motivation
• Choose the training samples adaptively


• Achieve greater accuracy with fewer training samples 


• In conventional ML, minimize human effort of labeling images 


• For us, minimize the number of ab initio QM calculations


• (aka optimal experimental/computational design)

Detect and query extrapolative (high-uncertainty?) 
configurations on-the-fly and get QM data for those. 


Key: query strategy, whether to query QM or not. If 
such decision can be made reliably, then one does 
not need to start with a very good training set.



Active Learning: query strategies
Uncertainty sampling: an active learner queries the instances about which it is least certain 
how to label. Straightforward for probabilistic models. 


Query-by-committee: committee of competing models, that are consistent with the current 
training set. The most informative query is considered to be the instance about which they most 
disagree. Key is to have a meaningful set of models. Need a measure of disagreement. Again, 
Bayesian/probabilistic is the best bet, but there are also non-probabilistic methods such as 
query-by-boosting and query-by-bagging. 


Expected model change: which query would lead to greatest model change, e.g. largest 
gradient length. 


Variance Reduction and Fisher Information Ratio: in regression setting, minimizing the 
variance component of generalization error (usually some sort of approximation or via Fisher). 


Estimated error reduction: Estimate the expected future error that would result if some new 
instance x is labeled and added to training set, and then select the instance that minimizes that 
expectation. Naively retrain with all potential new points. Practical if incremental training is 
possible, e.g. GP, or linear MLIP such as in this paper. 




Active Learning: optimality conditions
Straight out of wiki….



Active Learning Loop



Active Learning: Query-by-Committee

• Start with a training set of N points 

• Launch K learners, each with fN training points (f=0.8) 

• Evaluate the learners’ performance at all points in the pool 

• Select training points from the pool that correspond to the 


highest ’disagreement’ and add them to the training set 



Active Learning: planned workflow

Vienna ab initio 

sim package, vast.at

https://github.com/FitSNAP/FitSNAP

http://vast.at


Active Learning: Questions….
• Good starting point perhaps? Bayesian coresets?


• Search is in configuration space , but the data is  

• 'Newness'/extrapolation, measures of well-sampledness


- convex hull in/out

- distance from training set

- disagreement/st.dev. in ensemble of models (QBC)

- kernel density estimation


•  Clustering method to diversify the selection of new batch

•  Metric should perhaps be driven by the ‘outer’ task


- reaction search

- forward UQ in MD, outlier/anomaly detection

x E(x), F(x), S(x)



Forward UQ Plan

E ≈
P

∑
k=0

(ck + dkξk

c̃

) Bk(x)

• Sample SNAP coefficients

c̃ f(c̃)MD(E)

• Evaluate MD QoIs
• Build PC for MD QoIs, possibly multilevel/multifidelity

SNAP coefficients form a first order 

Gauss-Hermite Polynomial Chaos (PC)

• Evaluate PDF/statistics of QoIs
• Challenges: high-d input, noisy MD simulations



Summary
• Embedded model error for Bayesian inference of MLIAPs

• Meaningful model-error uncertainty capturing the true residual
• Non-negligible coefficient uncertainty that can be propagated through MD
• Choices to make: priors, likelihoods, MCMC sampler, where to embed…

• Initiating a workflow for active learning via QBC

• Leads to data model with baked-in uncertainty

• Anchored in uncertainty estimation, even if heuristic
• Promising results on toy models
• Engaging FitSNAP-VASP feedback
• Choices to make: query strategy, UQ method, metric of ‘newness’…



Extras



Posterior Predictions
✦   Bayesian inference hinges on likelihood function or data noise (DN) model

e.g. Gaussian i.i.d. yi = f(xi, c) + σϵi,  where ϵi ∼ 𝒩(0,1)

✦   After we obtain posterior PDF , there are two useful predictive quantities:p(c |y)

Push-forward (PF):                    p( f |y)

Posterior predictive (PP):           p(y* |y) = ∫ p(y* |c)p(c |y)dc

PP = PF + DN
Mean_PP = Mean_PF

Var_PP = Var_PF + σ2



Posterior PDF sampling via MCMC

✦ The likelihood requires assumptions regarding model/data relationships


✦ No closed form expression for posterior PDF unless very specialized 
likelihoods are used


✦ Need to resort to sampling the posterior, rather than evaluating directly


✦ Markov chain Monte Carlo is the main vehicle for posterior sampling

p(c |y) ∝ p(y |c)p(c)

Posterior PDF

Likelihood

Prior PDF



Linear Models: luxury of analytical answers 
✦  Linear least-squares regression (polynomial, bispectrum, …) y ≈ Ac

c* = argminc | |
Ã⏞

WA c −
ỹ⏞

Wy | |2

where  is a diagonal matrix of weights, e.g.  driven by Dakota.W wi

✦  Deterministic: c* = (ÃT Ã)−1ÃTy

✦  Bayesian posterior PDF… c = 𝒩 (c*, (ÃT Ã)−1)

✦  Equivalent unweighted least-squares w/ scaled data: c* = argminc | | Ãc − ỹ | |2

c = 𝒩 (c*, σ2(ÃT Ã)−1)

✦ … but it is better to include σ

c* = argminc
| | Ãc − ỹ | |2

σ2



FitSNAP solvers with Uncertainty
Forked and created 


a UQ branch
Analytical Bayesian 

linear regression

Bayesian compressive sensing 

(TBD, need bispectrum pruning)

MCMC

Optimization via 

scipy.optimize

merr.py
Model error, TBD

UQ solvers creates the requested

number (nsam) of snapcoeff files, 

e.g.

Sample # 25

this talk



Variational inference finds an approximate posterior PDF

True posterior
p(c |y) ∝ p(y |c)p(c)

Class of parameterized 

variational posteriors

qθ(c)

qθ*(c) The closest 

variational posterior

KL dista
nce



Variational inference
✦  Kullback-Leibler Divergence: ‘distance’ metric between PDFs

KL(p1 | |p2) = ∫ ln ( p1(x)
p2(x) )p1(x)dx

KL (qθ(c) | |p(c |y)) = . . . = KL (qθ(c) | |p(c)) − ∫ qθ(c)ln p(y |c)dc + const

∫ qθ(c)[ln qθ(c) − ln p(c) − ln p(y |c)] dc

Minimize this: 

many flavors exist, e.g. with stochastic gradient descent and Monte-Carlo sampling

✦  KL between Variational and True Posteriors:



Weighted interpolation [Ischtwan 1994; Dowes, 2007-09; Maisuradze, 2009] 


Permutationally invariant polynomials [Xie, 2010] 


Gaussian processes [Bartok, Csanyi 2010-15; Mills, 2012; Rupp, 2013; Cui, 2016; Uteva, 2017; 
Guan, 2018; Schmitz, 2018] 


Low-rank tensor expansions [Jackle, 1996; Baranov, 2015; Rai, 2017, 2018] Support vector 
machines, kernel regression [Le, 2009; Balabin, 2011; 


Dral, 2017] 


Neural networks (NN) [Blank, 1995; Tai No, 1997; Prudente, 1998; Lorenz, 2004; Witkoskie, 2005; 
Manzhos, 2006-09; Malshe, 2008; Le, 2009] [Behler, 2010-16; Handley, 2010, 2014; Jiang, 2013; 
Li, 2013; Dolgirev, 2016; Khorshidi, 2016; Peterson, 2016; Carr, 2016; Kolb, 2016; Shao, 2016; 
Chmiela, 2017; Cubuk, 2017; McGibbon, 2017; Smith, 2017; Schutt, 2017; Yao, 2017; Hajinazar, 
2017; Bereau, 2018; Lubbers, 2018; Unke, 2018; Wang, 2018; Natarajan, 2018; Zhang, 2018; 
Onat, 2018] 




Challenges Galore

Likelihood choice 


Prior selection for model-error embedding parameters


Incorporation of DFT errors?


Large set of training data, matrix inversions infeasible


Weighting between energies, forces and stresses

Bayes MLIAP + Model Error


