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FusMatML Project Overview

* Pl: Aidan Thompson (SNL-NM)

* Advance the state-of-the-art in atomistic modeling of plasma-materials interactions
connecting ab initio calculations, large-scale molecular dynamics simulations, and
experimental characterization to impact fusion energy research.

* Generate a new class of machine learning interatomic potentials (MLIAP)
systematically optimized to robustly measure and control Qol uncertainty for the complex
structural and chemical environments required for plasma-materials interactions

« UQ Thrust: Habib Najm, Khachik Sargsyan, Logan Williams (SNL-CA)

e Deploy novel ML/UQ to advance the development of robust MLIAPs
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Most of this talk %%% Bayesian inference of IAPs, model errors
Some preliminaries %k  Active learning



Interatomic Potentials

» Object of interest: potential energy E of a system defined by a configuration x,

where x encapsulates coordinates of all atoms in the system

- Typically additive form. E(x) = E, .+ 2 E(x;) + ... using local environments
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Ingredients of MLIAPs

= min | | E — f,(2) ||
el p

Input Fingerprint Fcn Form Data
r € RN z € RM fo(2) E

1

Cartesian Morse SVM Ab initio DFT

Symm. Fcns NN include Force, Stress
PIP GP

Bispectrum LR Tensor
ACE Lin. Regression

Training data (x;, E;) fori = 1,...,S and x; € R°"
Input representation, aka fingerprint, aka descriptor x — z(x)

Parametrized functional form of the approximation class ];(z)

S
Loss function: minz:[El-—]j,(zl-)]2 + regularization
Pz




State-of-the-art: largely manual and lacking systematic UQ

MLIAP Construction

4+ Good training set selection: active learning
4+ Fingerprint choice: invariances, symmetries
4+ Functional form choice: model selection

4+ Loss function: regularization, weighting energies and forces

MLIAP Usage

4+ Find reaction pathways, saddle points

4+ Pipe the IAPs to MD simulations



Equipping parametric fits with uncertainties
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Equipping parametric fits with uncertainties

Descriptors | Complex (e.g. bispectrum) 23232 Simple (e.g. cartesian)

IAP Models i

Bayesnan Apprx. Heuristic

Methods Analytncal MCMC m Ensemble Methods




Spectral nelghbor anaIyS|s potentlal (SNAP) details

A P Thompson et aI “Spectral nelghbor analysis

- : : method for automated generation of

* Uses bispectrum as fingerprints: | | |
quantum-accurate interatomic potentials”,

Journal of Computational Physics,

285(15), pp. 316-330, 2015.
- respects rotational, permutational, translational invariances

- built on hyper spherical harmonics basis functions

%1 :~ .

- Incorporates forces and stresses as well F

hyper-parameters raining Fecon

| f\ Data be§r Lol
- tunable complexity/order - m‘/ I
[ FSNAP.py |« BRS¢t EE T ot & et

DAKOTA
U/

energy and force errors
material property objective functions

* Uses linear regression as model form:;
M. Wood and A. Thompson ,

- built on hyper spherical harmonics basis functions “Extending the accuracy of the

: . / SNAP interatomic potential form”,
- generalized to quadratic form as well

Journal of Chemical Physics, 148, 2018.



4+ Given amodel f(x,c) and data y;, = y(x;) , calibrate parameters c.

L Linear model y =~ Ac with coefficients ¢

NN model y &~ NN .(x) with weights/biases ¢

N
: 2
4+ Weighted least-squares fit: c* = argmlncz wi (fx, ©) — y;)
=1

N | )2
4 Bayesian equivalent:  p(c|y) x p(y|c)p(c) Hexp (— U, ©) = 30 )

2072
i=1 l



Crucial piece: assumptions for
likelihood, or data model, or noise model _

Posterior PDF  Prior PDF Model Data

/ b o (_ <f<lxl-, ) - y{-)z)

p(cly) x p(y|e)p(c) 52

f |
Likelihood/

4+ Prior contains previous knowledge or regularization

4+ Likelihood contains data noise modeling assumptions,

e.g. y; = f(x;, c) + o€, , where €, ~ N (0,1)
Data Model



Linear Models: luxury of closed-form posteriors

4+ Gaussian likelihood with fixed o fx,c) =Ac

] (Ac); — v,)?
p(y| ) ocﬁgexp (— > )

4+ |Leads to Gaussian posterior PDF
p(cly) x p(ylop(c) ~ & ((ATA) ATy, 65(ATA))

4+ As well as Gaussian push-forward and posterior predictive



(Ac); — yi)z

1 N
: : : : : 9
4 (Gaussian likelihood with inferred o p(y|c,07) x ﬁgﬂp <— 572 )

4+ Leads to normal-inverse-gamma posterior PDF

p(c,6°|y) « p(y|c,6%)p(c,6%) ~ NIG

4+ ... but only its marginals are interesting/useful

p(cly,c®) ~ N ((ATA)‘lAT ,62(ATA)—1)

- o p(cly) ~ St ((ATA) ATy, 6*(ATA)",N - K)

2 k’
Effective stdv. = residual RMSE

, N-K N-K ~
po-|y) ~ IG




Elephant in the room:
model I1Is assumed to be *the* correct model behind data

Model  pgatg err.
Yi :fxia c) + 0,;€; Model # Truth
Truth

lgnoring model error hurts in a few ways:

4+ One gets biased estimates of parameters c (crucial if the model is
physical, and/or c¢ is propagated through other models)

4+ More data leads to overconfident predictions (we become more and more
certain about the wrong values of the data)

+ More evident when there is no (observational/experimental) data error:
e.qg. DFT Is data, and IAP is model



Posterior uncertainty does not capture true discrepancy

Synthetic data
y(x) = sin*(2x — 0.3)

Cubic fit

3
y, R Z ¢ B (X)
k=0

More data leads to
overconfident prediction
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Capturlng Model Error In Likelihood (a k.a. Data Model)

= f(x;, c) + 5(xl-) + o€,

External correction

(Kennedy-O’Hagan): - Kennedy, O’Hagan, “Bayesian Calibration of Computer Models”.
J Royal Stat Soc: Series B (Stat Meth), 63: 425-464, 2001.

f( c + 5(x)) + o€,

Internal correction » Allows meaningful usage of calibrated model

(embedded model error): . ‘Leftover’ noise term even with no data error

» Respects physics (not too relevant in our context)

- Sargsyan, Najm, Ghanem, “On the Statistical Calibration of Physical Models”.
Int. J. Chem. Kinet., 47:. 246-276, 2015.

» Sargsyan, Huan, Najm, “Embedded Model Error Representation for Bayesian Model Calibration”.
Int. J. Uncert. Quantif., 9(4): 365-394, 2019.



Embedded Model Error for Linear Regression Models

P
Note:

11 No formal distinction between
=0 iInternal and external corrections,
but internal allows for interpretation

: . . and model-informed error
‘Embed’ uncertainty in

all (or selected) coefficients

/
P P P
yim Y (o + di&) B D aBx) + ) dB(x)E

k=0

Model Model error

(still Gaussian, but correlated,
and model-informed)



Embedded Model Error: likelihood options

Classical data model

P
Yy ” Z ¢, B, (x) + o€
k=0

(X kB — )

207

N
plcly) o | Jexp |-
=1

MCMC sampling of ¢

Embedded model error .

P P
y; R Z (¢, +d&) B (x) = Z c B (x) + Z d, B (x)¢,
k=0 k=0

k=0
Option 1 (IID) MCMC sampling of ¢, d

v (Lo KBilx) = i)’ or
p(c,d\y)ocHeXp - 7 . - .
1 2% 2By (x)? simply optimize the posterior for ¢, d




Embedded Model Error: likelihood options

Classical data model N (211::0 ¢ Bi(x) — )
plcly) o [ [exp| -
=1

Z 207
Yy ” Z ¢, B, (x) + o€
k=0

l

MCMC sampling of ¢

Embedded model error .

P P
y; R Z (¢, +d&) B (x) = Z c B (x) + Z d, B (x)¢,
k=0 k=0

k=0
Option 2 (ABC)

N (S0 B =y + () Ty d2BRC) — al Ty eiBix) = yi1

ple.dly) o< | | exp| - >
=1 ¢



Pushed forward predictive uncertainty captures

Synthetic data Cubic fit

3
y(x) = sin*(2x — 0.3) Vi & ) B
k=0
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W-ZrC Dataset

error
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» Embedding type: e.q.

P P
additive y; & ) (¢, + d&) By(x) or multiplicative y; & ) (¢, + &) By(x)
k=0 k=0

» Degenerate (Gaussian) likelihoods: resort to
approximate Bayesian computation (ABC) or independent (IID) assumptions

» Difficult posterior PDFs for MCMC, choice of priors for embedding parameters

» Which coefficients to embed the model error in?
» Connect predictive uncertainty and the residual error with an extrapolation metric

» Weighting between energies, forces and stresses

» Major challenge: data sizes are large, linear algebra chokes



Equipping parametric fits with uncertainties

D> Simple (e.g. cartesian)

TIT Neuai Networis 3

Bayesnan Apprx. Heuristic

Methods Analytlcal MCMC m Ensemble Methods

------------------------------------------------------

Descriptors | Complex (e.g. bispectrum)

IAP Models

FitSNAP Solvers, incl. model error PyTorch Wrapper Library, QUINN



Deterministic Probabilistic

torch.nn.module et ——— wrapper(torch.nn.module)

Usage:q ugnet = MCMC_NN(nnet) ugnet = VI_NN(nnet) ugnet Ens NN(nnet, ‘nmc )
7 N 7 B | - N 4 o N
class (QUiNNBase) : class \{QUINNBase) : class IN(QUINNBase):
def init | | , : def _‘_lnl"LVE " ; ! LE, ol def __init__ ; ’
super (MCMC_NN, self). init__ (nnmodule e e e dep ity L'“méLT nnmogute super(Ens_NN, self).__init__(nnmodule)
self.verbose = verbose SéLT.bmoae eétinnmodute self.verbose = verbose
: self.verbose = verbose self.nens nens
\_ J \_ S _ J

Option 1: MCMC Option 2: Variational Inference Option 3: Ensembling

* The right thing to do, but * Practically feasible

.  Heuristic, unfortunately....
extremely challenging

* Many hyperparameters to tune . but works best for

* Does not represent extrapolative complex models
uncertainties well

* Practically unusable for
complex models

* Query-by-Committee (QBC)




» Choose the training samples adaptively

» Achieve greater accuracy with fewer training samples

* |n conventional ML, minimize human effort of labeling images

« For us, minimize the number of ab initio QM calculations

 (aka optimal experimental/computational design)

membership query synthesis

model generates
a query de novo

stream-based selective sampling

_____ s;mplscin_ -0 model decides to e

query or discard i

pool-based active learning

sample a large . model selects
pool of instances Z/{ the best query

by the oracle

- - -

[B. Settles, “Active learning literature survey”, Computer Sciences Technical Report 1648,
University of Wisconsin-Madison, 2009]

Detect and query extrapolative (high-uncertainty?)
configurations on-the-fly and get QM data for those.

Key: query strategy, whether to query QM or not. If
such decision can be made reliably, then one does
not need to start with a very good training set.



Uncertainty sampling: an active learner queries the instances about which it is least certain
how to label. Straightforward for probabilistic models.

Query-by-committee: committee of competing models, that are consistent with the current
training set. The most informative query is considered to be the instance about which they most
disagree. Key is to have a meaningful set of models. Need a measure of disagreement. Again,
Bayesian/probabillistic is the best bet, but there are also non-probabilistic methods such as
query-by-boosting and query-by-bagging.

Expected model change: which query would lead to greatest model change, e.g. largest
gradient length.

Variance Reduction and Fisher Information Ratio: in regression setting, minimizing the
variance component of generalization error (usually some sort of approximation or via Fisher).

Estimated error reduction: Estimate the expected future error that would result if some new
instance X is labeled and added to training set, and then select the instance that minimizes that
expectation. Naively retrain with all potential new points. Practical if incremental training is
possible, e.g. GP, or linear MLIP such as in this paper.



Straight out of wiki....

» A-optimality ("average" or trace)

» One criterion is A-optimality, which seeks to minimize the trace of the inverse of the information matrix. This criterion results in minimizing the average variance of the estimates of the
regression coefficients.

o C-optimality
e This criterion minimizes the variance of a best linear unbiased estimator of a predetermined linear combination of model parameters.

e D-optimality (determinant)

« A popular criterion is D-optimality, which seeks to minimize I(X'X)~"l, or equivalently maximize the determinant of the information matrix X'X of the design. This criterion results in
maximizing the differential Shannon information content of the parameter estimates.
« E-optimality (eigenvalue)

« Another design is E-optimality, which maximizes the minimum eigenvalue of the information matrix.
e T-optimality
e This criterion maximizes the trace of the information matrix.
Jther optimality-criteria are concerned with the variance of predictions:
e G-optimality

e A popular criterion is G-optimality, which seeks to minimize the maximum entry in the diagonal of the hat matrix X(X'X)~'X". This has the effect of minimizing the maximum variance of the
predicted values.

 |-optimality (integrated)
e A second criterion on prediction variance is l-optimality, which seeks to minimize the average prediction variance over the design space.
» V-optimality (variance)

» Athird criterion on prediction variance is V-optimality, which seeks to minimize the average prediction variance over a set of m specific points.°!



Unlabeled
Data Pool



Unlabeled Data Pool - Start with a training set of N points

- Launch K learners, each with fN training points (f=0.8)
- Evaluate the learners’ performance at all points in the pool
« Select training points from the pool that correspond to the
Training ' Prediction
H highest 'disagreement’ and add them to the training set
Training : Prediction
Labeled h . - Uncertainty Griewank with dim = 32
Data - LGl : Prediction - Estimation 3x10729 | ~@- passive
—€- active
- Training ! Prediction '
]
|

Training Prediction % 2x107
o
S
e
8
Label Data Select Data
1072

101 102 103
# data points



__Active Learning: planned workflow

Generate pool of
unlabeled structures
MD, genetic algo, etc.

Vienna ab initio . _ .
https://github.com/FitSNAP/FitSNAP

L

sim package, vast.at

FitSNAP.py

Initial dataset: Evaluate random
structure -> Energy, structures
forces, stresses

Structures with
Coefficient the most uncertain
Evaluate prediction ) predictions
uncertainty
on unlabeled pool

covariance Cluster and select

structures from pool

Train FitSNAP model
w/ UQ solvers

Run VASP to
calculate properties

Structures: energies, forces, stresses

Add new structures
to training data on chosen structures



http://vast.at

Active Learning: Questions....

» Good starting point perhaps? Bayesian coresets?

- Search is in configuration space x, but the data is E(x), F(x), S(x)

« 'Newness'/extrapolation, measures of well-sampledness
- convex hull in/out

- distance from training set

- disagreement/st.dev. in ensemble of models (QABC)

- kernel density estimation

» Clustering method to diversify the selection of new batch
» Metric should perhaps be driven by the ‘outer’ task

- reaction search

- forward UQ in MD, outlier/anomaly detection



H . DFT |

MD(E) J(©)

P
Ex ) (¢ +dé&) Bx)
=0 3<+ SNAP coefficients form a first order
Gauss-Hermite Polynomial Chaos (PC)

- Sample SNAP coefficients

 Evaluate MD Qols

» Build PC for MD Qols, possibly multilevel/multifidelity
 Evaluate PDF/statistics of Qols

» Challenges: high-d input, noisy MD simulations



* Embedded model error for Bayesian inference of MLIAPS

» Leads to data model with baked-in uncertainty

» Meaningful model-error uncertainty capturing the true residual

* Non-negligible coefficient uncertainty that can be propagated through MD
» Choices to make: priors, likelihoods, MCMC sampler, where to embed...

* |Initiating a workflow for active learning via QBC
» Anchored in uncertainty estimation, even if heuristic

* Promising results on toy models
- Engaging FitSNAP-VASP feedback

» Choices to make: query strategy, UQ method, metric of ‘newness’...



Extras



4+ Bayesian inference hinges on likelihood function or data noise (DN) model

e.g. Gaussian i.i.d. y; = f(x;, ¢) + o€;, where €, ~ /(0,1)

4+ After we obtain posterior PDF p(c|y), there are two useful predictive quantities:
Push-forward (PF): p(fly)

Posterior predictive (PP): p(y*|y) = J’p(y>I< | c)p(c|y)dc

- Mean PP = Mean PF
PP = PF + DN ]<:
- Var PP = Var PF + ¢°




Posterior PDF Prior PDF

/ /

p(cly) o p(y|c)p(c)

f

Likelihood

4+ The likelihood requires assumptions regarding model/data relationships

4+ No closed form expression for posterior PDF unless very specialized
likelihnoods are used

4+ Need to resort to sampling the posterior, rather than evaluating directly

4+ Markov chain Monte Carlo is the main vehicle for posterior sampling



Models: luxury of analytical answers

4+ Linear least-squares regression (polynomial, bispectrum, ...) y & Ac
A T
c* =argmin || WA ¢ — Wy

2
|

where W is a diagonal matrix of weights, e.g. w; driven by Dakota.

~/

1T oo

| |
2%

+ Equivalent unweighted least-squares w/ scaled data: ¢* _:@@mw&ﬂﬁf

\®)

O

4 Deterministic: c* = (ATA)71ATy

4+ Bayesian posterior PDF... c=N (C*, 674&@&71)

4 ... but it is better to include o



Forked and created
a UQ branch

¥ uq ~  FitSNAP /fitsnap3 | solvers /

Analytical Bayesian | .oiver - mu

his ranchis & commis ahezcl of FISNAPmaster linear regression Egimnjgéz‘;’ 1 w1 | i+ UQsolvers creates the requested
number (nsam) of snapcoeft files,

: e.g.
B lan compressiv nsin [SOLVER] E Sample # 25
ayesian compressive sensing ,

ksargsyan bug fix in MCMC ...

template_solver.py Solver o OPT

tensorflowsvd.py SCi py- O pti m ize

B Model error, TBD

this talk

: : solver = BCS 008 METCE
D bcs.py B D n eed b I S eC-tru m ru n I n 1 ¢ fitsnap fit generated on 2021-10-30 00:46:00.217256
1
y p p g nsam = 133 . 3 a1
D meme.py : W 0.4033335777 1.0
-15.3500742786061313 # B[0]
0.8325450949477414861 # B[1, o, 0, @]
O optpy : 0.0786028816107458284 # B[2, 1, 0, 1]
[SOLVER] . -0.144382530698556222 # B[3, 1, 1, 2]
= . -0.738222137312165794 # B[4, 2, 0, 2]
B scalapack.py solver = MCMC I -0.140285804611108733 # B[5, 2, 1, 3]
nsam = 133 ' 9.288874324985492814 # BI[6, 2, 2, 2]
D solver.py mcmc_num = 1000 1 -0.0217902885756043087 # B[7, 2, 2, 4]
& I -0.377006851861265813 # B[8, 3, 0, 3]
mcmc_gamma = 0.01 ' —0.845242239468904089 # B[9, 3, 1, 4]
(Y solver_factory.py I 1.11733162664206276 # B[10, 3, 2, 3]
- I | _a ac2nEAQ12E7IE010507 # nf11 2 » &1
o e Optimization via [i |
D
D



Variational inference finds an approximate posterior PDF

True posterior
pcly) « p(y|c)p(c)

variational posterior

qy(C)

Class of parameterized
variational posteriors



4+ Kullback-Leibler Divergence: ‘distance’ metric between PDFs

KL(p,||py) = Jln (pl(X)

pr(x)

) p(x)dx

4 KL between Variational and True Posteriors:

KL (gy0) | Ip(cly)) = ... =KL (gyc)||p(c)) — qu(c)lnp(y | c)dc + const
N——mr T ——

J%(C) [111 go(c) —Inp(c) — Inp(y| C)] dc

Minimize this: __//

many flavors exist, e.g. with stochastic gradient descent and Monte-Carlo sampling



Weighted interpolation [Ischtwan 1994; Dowes, 2007-09; Maisuradze, 2009]
Permutationally invariant polynomials [Xie, 2010]

Gaussian processes [Bartok, Csanyi 2010-15; Mills, 2012; Rupp, 2013; Cui, 2016; L
Guan, 2018; Schmitz, 2018]

Low-rank tensor expansions [Jackle, 1996; Baranov, 2015; Rai, 2017, 2018] Suppol
machines, kernel regression [Le, 2009; Balabin, 2011;

Dral, 2017]

Neural networks (NN) [Blank, 1995; Tai No, 1997; Prudente, 1998; Lorenz, 2004; Wi
Manzhos, 2006-09; Malshe, 2008; Le, 2009] [Behler, 2010-16; Handley, 2010, 2014;
Li, 2013; Dolgirev, 2016; Khorshidi, 2016; Peterson, 2016; Carr, 2016; Kolb, 2016; S
Chmiela, 2017; Cubuk, 2017: McGibbon, 2017; Smith, 2017; Schutt, 2017: Yao, 20
2017; Bereau, 2018; Lubbers, 2018; Unke, 2018; Wang, 2018; Natarajan, 2018; Zha
Onat, 2018]



Bayes MLIAP + Model Error

Likelihood choice

Prior selection for model-error embedding parameters
Incorporation of DFT errors?

Large set of training data, matrix inversions infeasible

Weighting between energies, forces and stresses



