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• Uncertainty from Multi-model 
ensembles

• Large spread in outputs
• Many quantities of interest
• Little formal uncertainty 

quantification (UQ)
– Expensive model evaluation
– High dimensionality

UQ challenges in E3SM :
• What processes drive uncertainty?
• What accounts for the key 

differences among models?
• Can model calibration using 

observations (e.g. satellite data) 
reduce uncertainty?

Overview and motivation:  LSMs

Friedlingstein et al (2014)
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The case for large ELM ensembles
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• Needed to understand 
parametric uncertainty

• High dimensionality 
(uncertain parameters)

• Can be used to construct 
surrogate models, which 
enable UQ methods
– Sensitivity analysis
– Parameter calibration

• Single gridcell UQ:  Uses mpi-serial version of ELM with mpi4py in the 
offline land-model testbed (OLMT) to run up to 10k ensemble members

• Ongoing tasks:  ELM-FATES, crop, default ELM

• Global UQ:  Generally smaller ensembles (100-200), low resolution

Surrogate 
model



A global ELM ensemble
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• Focused on GPP (gross primary productivity)
– Primary input for land C-cycle, 
– strong coupling with transpiration

• 10 parameters analyzed using 275 ensemble members 
(1.9x2.5 resolution), satellite phenology 

Parameter Description Min Max Default range
flnr Fraction of leaf in in RuBisCO 0 0.25 [0.042,0.176]

mbbopt Stomatal slope (Ball-Berry) 2 13 [4,9]

bbbopt Stomatal intercept (Ball-Berry) 1000 40000 [10000,40000]

roota_par Rooting depth distribution 1 10 [3,10]

vcmaxha Activation energy for Vcmax 50000 90000 72000

vcmaxse Engropy for Vcmax 640 700 670

jmaxha Activation energy for jmax 50000 90000 72000

dayl_scaling Day length factor 0 2.5 2

dleaf Characteristic leaf dimension 0.01 0.1 [0.01,0.1]

xl Leaf/stem orientation index -0.6 0.8 [-0.5,0.65]



GPP (gC m-2 day-1) ensemble 
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Goal: create a surrogate model

Surrogate models are needed for computationally intensive tasks:

• Parameter estimation
• Optimization
• Experimental/computational design 
• Forward uncertainty propagation

… otherwise called
• Metamodels
• Response surfaces
• Emulators
• Low-fidelity model

Surrogate model is a “good-enough” approximation of the full model 
over a range of parameter variability.

Black Box

𝑌 = 𝑓(𝜆; 𝑥, 𝑡, … )

Uncertain input 
parameters

Operating conditions, 
forcings, indexed QoIs

𝑓 𝜆; 𝑥, 𝑡, … ≈ 𝑓!"##(𝜆; 𝑥, 𝑡, … )
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Curse of dimensionality hits twice!
Black Box

𝑌 = 𝑓(𝜆; 𝑥, 𝑡, … )

Uncertain input 
parameters

Operating conditions, 
forcings, indexed QoIs

High-d input: large number of 
uncertain parameters

High-d output: large number of 
QoIs over high-res grid

Challenge:

Fix:
Sensitivity analysis to select the 

most important parameters
Principal component analysis to

reduce dimensionality
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Global Sensitivity Analysis (GSA)
enables parameter selection

… otherwise called Sobol indices, variance-based decomposition
Attribute fractions of output variance to input parameters

• i.e., how much output variance 
would reduce if a given parameter 
is fixed to its nominal value

• also generalizes to joint sensitivities: 
joint parameter impact to a given QoI

Param 1 Param 2 P 3 Param 4 Param 5
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Sensitivities of global average GPP
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Spatio-temporal surrogate model via 
Karhunen-Loève and Polynomial Chaos

𝑓 𝜆; 𝑥, 𝑡 ≈ -
$%&
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𝑓$( 𝜙( 𝜆 𝜑$(𝑥, 𝑡)

𝑓!"##(𝜆; 𝑥, 𝑡)

Karhunen-Loève (KL) expansion is essentially a continuous version of 
principal component analysis

Polynomial chaos (PC) expansion is essentially a polynomial regression 
with respect to uncertain parameters

KL PC
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Spatio-temporal KL-PC surrogate 
is globally within 10% accuracy

• 3183 land cells over 180 months is > 500,000 outputs
• Instead of 500K surrogates, we build  about 2K surrogates, 

one for each eigen-component

• End result: a single surrogate, 
resolved in space and time, 
with about 10% relative error  
compared to true ELM

• Surrogate ELM is extremely cheap 
to evaluate and is being used 
online to calibrate the parameters

• Room to improve: neural networks!!
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ELM vs Surrogate:
accuracy can be improved with higher order KL or PC 
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Gridcell-level sensitivities

Site US-Fpe

Site US-Ha1

13

Grassland
Montana, USA

Deciduous forest 
Massachusetts, USA



Sensitivity to flnr
(fraction of leaf N in RuBisCO)
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Sensitivity to mBBopt
(stomatal slope)
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Constraining ELM with FLUXNET
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• FLUXNET towers measure CO2, 
water, energy fluxes

• FLUXCOM:  A gridded GPP 
benchmark upscaled from 
FLUXNET network using 
meteorology, remote sensing

• In this study: 96 high-quality 
sites selected for calibration

• This analysis focuses on calibration at multiple gridcells, but methodology can 
be used to calibrate gridded observations/benchmarks (e.g. FLUXCOM)



FLUXCOM data, visualized
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Model ensemble with GPP data
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Deciduous forest, Tennessee, USA

Evergreen forest, Oregon, USA



Bayesian approach is main tool for 
parameter calibration

• Bayesian inference allows incorporation of various sources of uncertainty
• Markov chain Monte Carlo (MCMC) for building posterior PDFs

– Ugly high-dimensional parameter PDFs, but advanced MCMC methods 
are available

• Requires many online evaluations of the model
– This is why we needed the surrogate!

• Predictive uncertainty decomposition augmented with surrogate error 
and observational noise, and model structural error

Param 1 Param 2 Param 4 Model str. errorSurr. error Data noise

Prediction variance 
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Calibration with Embedded
Model Structural Error

• Model structural error embedding approach [Sargsyan et. al., 2015, 2018] 
• Embedded, but not intrusive, i.e. black-box
• Meaningful extrapolation to full set of QoI predictions
• Disambiguation between model error and data noise
• Removes parameter biases and overfitting

KUKU

Forward modeling

Inverse modeling

Calibration

Preprocess

Prediction

fi(�)

Model

f̃i(�)

Surrogate

f̃i(�+ �(↵; ⇠))

Embedded
model

GSA/BF
Likelihood D = {gi}

Data

Posterior p(�,↵|D)

Prior p(�,↵)

h(�+ �(↵; ⇠))

Any QoI

Prediction p(h|D)
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Prior vs posterior predictions…

Uncertainty reduction: zoom in the parameter space regions relevant to obs. data
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Deciduous forest, Missouri, USA



… with uncertainty decomposition

Model structural error is usually the largest contributor of predictive variance
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Calibration reduces 
predictive mean error and 

predictive standard deviation 
Prior Posterior
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Calibration reduces 
predictive mean error and 

predictive standard deviation 
Prior Posterior

24



Calibrated parameter values across FLUXNET sites

Without model error: Overfitting, i.e. high variability in flnr across sites within and across PFTs

With model error: fair representation of unknown flnr (still narrower than prior!)
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Summary
• Constructed spatio-temporal surrogate to approximate ELM 

– Karhunen-Loève + Polynomial Chaos expansions
– Surrogate is orders of magnitude less expensive than ELM 

• Global sensitivity analysis or variance decomposition is a free bi-product
• Bayesian calibration using online evaluation of the surrogate

– Embedded model structural error provides the missing uncertainty component
– Reduction of predictive uncertainty in light of FLUXCOM data
– Full decomposition of predictive uncertainty

• Build a global land-model calibration framework
– Construct ensembles with land biogeochemistry active (higher expense)
– Determine sensitive parameters for land variables that couple to Earth system
– Engage with ILAMB to prioritize datasets to be used to integrate with ELM
– Find best parameters to use in future offline and coupled experiments

Param 1 Param 2 Param 4 Model str. errorSurr. error Data noise

Next:
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