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• UQ and statistical learning  

• Model structural error 

• Applications 

• Summary/future

• Chemistry (BES) 
• Fusion science (FES+ASCR) 
• Turbulence modeling (DARPA) 
• Climate land model (BER+ASCR) 
• Thermodynamics (EERE) 
• …. 
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Combination of  
supervised and unsupervised ML methods 

to tackle  
non-linearity, curse of dimensionality 

and computational expense

Forward Uncertainty Quantification (UQ): 
not the focus in this talk

Comp. model

Output predictionPhysical input  
parameters

Forward predictions: 
surrogate models,  
sensitivity analysis,  

parametric uncertainty

=Prediction variance parametric uncertainty
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Inverse Uncertainty Quantification: 
Statistical Learning from Data

Inverse modeling:  
parameter tuning,  

calibration,   
data noise 

Comp. model

Meas. model

Physical input  
parameters

Output prediction

Observed data

Forward predictions: 
surrogate models,  
sensitivity analysis,  

parametric uncertainty

=Prediction variance parametric uncertainty data noise+
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Bayesian inference for statistical learning of model parameters

• Collected data        

• Data model      

{(xi, yi)}N
i=1

yi = f(xi; λ) + ϵi

• Prior         :  knowledge of  before seeing data (expert opinion, previous analysis, etc…) 

• Likelihood :  forward model and measurement noise 

• Posterior   :  updated knowledge of , combining the prior and the likelihood 

• Evidence   :  normalizing constant, useful for model selection, not for parameter estimation

λ

λ

• Bayes formula
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Markov chain Monte Carlo is used to sample from posterior

Likelihood is key:  
• It incorporates statistical assumptions about the discrepancy between model and data. 
• It requires model evaluation at a proposed parameter value .λ

Markov chain Monte Carlo (MCMC) samples from posterior by marching in the -space.λ

… but it is often infeasible to use model online in an MCMC loop, 

hence we pre-construct a model surrogate.
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Surrogate-enabled Bayesian inference

KUKU

f(�)

Model

fc(�)

Surrogate

Forward UQ

Inverse UQ

Dim.
Red.

Likelihood D = {yi}

Data

Posterior p(�|D)

Prior p(�)

g(�)

Any model

Prediction p(g(�)|D)

=Prediction variance parametric uncertainty data noise+ + surrogate error
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model struc
tural e

rror 

Elephant in the room:
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Model error can be defined in a variety of ways

     Very loaded concept 
… otherwise called  

    (with altered meanings) 

• model discrepancy 
• model structural error 
• model inadequacy 
• model misspecification 
• model form uncertainty 
• model uncertainty

Model error is associated with 
• Simplifying assumptions, parameterizations 
• Mathematical formulation, theoretical framework

In this work, model error is the difference between  
our model and the ‘truth’ model behind noisy data

model truth noisedata

VS
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• Allows meaningful extrapolation 
• Respects physics 
• Disambiguates model and data errors 
• Predictive uncertainty attribution  

• surrogate errors  
• data noise 
• parametric uncertainty  
• structural errors

• Code available via UQTk  
• (www.sandia.gov/uqtoolkit) 

• Impacted many programs DOE/DOD/SNL 
• Applied outside immediate group 
• Provides alternative for the conventional  

external correction approaches

Non-intrusive Intrusive

• For best impact, always look under the hood 

Model exploration via embedded statistical representation of model error

Method: Sargsyan, Najm, Ghanem, IJCK (2015); Sargsyan, Huan, Najm, IJUQ (2019). 

Applications: Huan et. al, AIAA J (2018); Hakim et. al, CTM (2018);  Cekmer et. al, IJUQ (2018); Rizzi et. al, CMAME (2019). 
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KUKU

Forward modeling

Inverse modeling

Calibration

Preprocess

Prediction

fi(�)

Model
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Embedded statistical representation of model error 

=Prediction variance parametric uncertainty data noise+ + surrogate error

model error+
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• A sandbox for developing the method 
• Calibrating a simple 2-step reaction mechanism  
given high-fi model or experimental data 

QoI: log-ignition time

Sargsyan, Najm, Ghanem, IJCK (2015); Sargsyan, Huan, Najm, IJUQ (2019); Hakim et. al, CTM (2018)

Application: Chemistry                                     funded by BES

Without model error, all the discrepancy  
is attributed to data noise 
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Ignoring model error wrongly attributes uncertainty to data

No model error Embedded model error

• Multi-institution partnership, but direct collaboration with ORNL and UTK 
• Constructing uncertain input profiles for tungsten depth to propagate through Xolotl (PSI code)

O. Cekmer, K. Sargsyan, S. Blondel, H. Najm, D. Bernholdt,, B.D. Wirth, “Uncertainty quantification for incident 
helium flux in plasma-exposed tungsten”, Int. J. Uncertainty Quantification, Vol. 8, No. 5, p.429–446, 2018. 
 

Application: Plasma Surface Interaction  funded by FES+ASCR

MD data
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• Statistical learning of physical model parameters with Bayesian inference (inverse UQ) 
• … accelerated by model surrogates (forward UQ) 
• Embedded statistical model error representation allows: 

• respects physics; allows predictive variance attribution 
• stress-tested on a variety of applications 
• available via UQTk (www.sandia.gov/UQToolkit/)  

• K. Sargsyan, H. Najm, R. Ghanem, “On the Statistical Calibration of Physical Models”, 
Int. J. Chem. Kinetics, 47(4), 246-276, 2015. 

• K. Sargsyan, X. Huan, H. Najm. “Embedded Model Error Representation for Bayesian 
Model Calibration”, 9(4), Int. J. Uncert. Quant., 365-394, 2019. 

Khachik Sargsyan     ksargsy@sandia.gov            

Key References
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Representing and estimating model error is useful for 
• Reliable computational predictions 
• Model comparison, selection 

• Scientific discovery and model improvement: 
• “is it worth resolving details, or just parameterize empirically?” 

• Optimal resource allocation:  
• “do I improve my model (e.g. high-res), or run more simulations?” 

          Ignoring model error leads to 
• Biased parameter estimation 
• Overconfident predictions

Data Model Data noise

Model error is often the most dominant component of uncertainty



External correction is not satisfactory for physical models





Back to toy example

Stable prediction of  
“physical” parameters  

of the exponential function

Predictive uncertainty  
captures model error



Post. uncertainty  
(PU)

Model error 
 (ME)



Wrong model leads to biased estimation

Given noisy data



Wrong model leads to biased estimation

Calibrate an exponential model

Posterior PDF of exponential parametersModel prediction vs data



Wrong model leads to biased estimation

Posterior PDF of exponential parameters

Calibrate an exponential model, but data comes 
from a different function (there is model error!)

Model prediction vs data



Wrong model leads to biased estimation

Posterior PDF of model parameters

Collecting more data: become increasingly sure 
about the wrong values of parameters

Model prediction vs data



Wrong model leads to biased estimation

Posterior PDF of exponential parameters

Collecting more data: become increasingly sure 
about the wrong values of parameters

Model prediction vs data



Wrong model leads to biased estimation

Predictive uncertainties  
do not capture  

model-data discrepancy

Model prediction vs data … what we actually want

Predictive uncertainties  
capture  

model-data discrepancy



Large Eddy Simulation (LES) of a laboratory scale Scramjet 
combustor NASA Langley Hypersonic International Flight Research 

and Experimentation (HIFiRE) configuration

Application: Turbulent Flow                        funded by DARPA



• Major UQ challenges for turbulent flow (LES) 
• Nonlinear dynamics 
• Large number of uncertain parameters 
• LES model structural error 
• Optimize design under uncertainty

X. Huan, C. Safta, K. Sargsyan, G. Geraci, Michael S. Eldred, Zachary P. Vane, G. Lacaze, Joseph C. Oefelein, Habib N. 
Najm, “Global Sensitivity Analysis and Estimation of Model Error, toward Uncertainty Quantification in Scramjet 
Computations”, AIAA Journal, Vol. 56, No. 3, p.1170–1184, 2018

Prior prediction PDF Posterior prediction PDF

Model error is the main contributor  
of the predictive variance

Experimental data 
obtained from NASA

Application: Turbulent Flow                        funded by DARPA



• US DOE sponsored Earth system model 
• Land, atmosphere, ocean, ice, human system components 
• High-resolution, employ DOE leadership-class computing facilities 

Application: Earth System Land Model     funded by BER+ASCR

Serving as a UQ Lead for Land Model:  
Direct UQ impact on several land components, 

collaboration with multiple NLs 
    



Conventional calibration without model error

LHF = Latent Heat Flux

Land model calibration given FLUXNET observations

• Summer month peaks are not captured 
• Posterior uncertainty negligible 

(2 ) 𝜎



Calibration with embedded model error

LHF = Latent Heat Flux

Land model calibration given FLUXNET observations

• Model error component dominates 
• Captures model deficiency in summer months 
• Indicates model improvement opportunities 
• For further improvement: more intrusive embedding

(2 ) 𝜎



Land model calibration given FLUXNET observations

• Allows more accurate prediction of unobservable QoIs 
• Can be piped to human component or atmosphere model  
    as a boundary condition

Calibration with embedded model error

NPP = Net Primary Productivity
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Land model calibration given FLUXNET observations

• Allows prediction at other FLUXNET sites 
• Assumption: model goes wrong in a similar way

Calibration with embedded model error

LHF = Latent Heat Flux
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