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Outline

@ Motivation
e Energy Exascale Earth System Model (E3SM): Land component

@ Need for Surrogate Models

e Polynomial Chaos Surrogate
e Karhunen-Loéve expansions for field quantities
@ Neural Network Surrogates

@ Multilayer Perceptron (MLP)
@ Long short term memory (LSTM)
@ Physics-based LSTM

@ Global Sensitivity Analysis (GSA)

@ Preliminary Results
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E3SM Model Overview

Energy Exascale Earth System Model (E3SM) is a coupled earth model
@ US Department of Energy (DOE) sponsored Earth system model https://e3sm.org
@ Ocean, Atmosphere, Sea ice and Land Components
@ Computationally expensive to run the coupled mode (including ocean and atmosphere)
@ Can only do a few global simulations of coupled E3SM models — hard to get training data

E3SM

Energy Exascale
Earth System Model
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https://e3sm.org

E3SM Land Model (ELM) Overview

Land model incorporates a set of biogeophysical processes:
@ Cheapest component, can run in single column mode
@ Simplified python model available (sELM)
@ Can evaluate model many times for various input parameters
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ELM Produces Time Series given

Input Parameters and Forcing Drivers
@ O(10) — O(100)

uncertain inputs initialize
model
@ Daily Forcings/Drivers

@ Min/Max
Temperature QOI

@ Day of Year

@ Solar radiation
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Surrogates are necessary for expensive
computational models

@ ... otherwise called supervised ML, metamodel, emulator, proxy,
response surface.

f(z;A) = fs(z; M)

@ Surrogates are required for ensemble-intensive studies, such as
e parameter estimation
@ uncertainty propagation
o global sensitivity analysis
e optimal experimental design

Investigating surrogate construction approaches for
ELM to enable all of the above
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Curse of dimensionality hits twice

@ Input : large number of input parameters il oY) 2 sy
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Polynomial chaos (PC) surrogate for black-box f(\)

@ Represent QOIs as orthogonal expansion of random variables
FO) ~ F(A(€) = 3 caWa(®)
a€l

Germ: ¢ = (&1, &2, ..., &4), €.9. uniform: A(€) is a linear scaling
Multi-index o = {a1, ..., aq}
Orthogonal polynomials wrt p(¢), Wo (&) = 1, %as (&)
Typical construction approach: regression to find PC modes ¢,
Advantages of PC

e moment estimation, uncertainty propagation, global sensitivity
Expensive model challenge

e Use Bayesian regression, helps to quantify lack of simulation data
@ High-d challenge d > 1

o Number of terms in expansion of order p and dimension d:
17| = (d+p)!
- dlp!
o Use sparse regression

@ We employ Bayesian compressed sensing (BCS): iterative algorithm for Bayesian

sparse learning [Babacan, 2010; Sargsyan, 2014; Ricciuto, 2018]
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‘Free’ Global Sensitivity Analysis with PC
FME) = Y caPal(€)

o€l
@ Main effect sensitivity indices

>l
S = Var[E(f(AA)] _ _a€L
' Var[f(X)] ECATNIE
aeT\{0}

o 7, is the set of bases with only ¢; involved
e S, is the uncertainty contribution that is due to i-th parameter only

@ Total effect sensitivity indices

> call®all®
T =1— Var[E(f(/\‘Afz)} _ aeIiT
i Var[f(N\)] EEATNIE
aeZ\{0}

e I} is the set of bases with ¢; involved, including all its interactions.
e T; is the total uncertainty contribution due to i-th parameter
[Sudret, 2008; Crestaux, 2009; Sargsyan, 2017]
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Spatio-temporal surrogate model via Karhunen-Loéeve
expansions

@ 3183 active land cells over 180 months is > 500, 000 outputs

@ Karhunen-Loéve expansions help reduce dimensionality due to
strong spatio-temporal correlations
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@ Instead of 500,000 surrogates, we build about J = 2,000
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Spatially resolved GSA
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Time-resolved GSA
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Bayesian inference and prediction with surrogate

Calibration of ELM with GPP data, US-MOz site
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Transitioning from UQ technologies to ML

@ Polynomial chaos requires smooth Qols

@ Exploring transient behavior and daily dynamics requires more
accurate surrogates

@ Benign MLP, feed-forward network did not do too well

@ Does not account for temporal aspect of model

@ Cannot propagate information of QOls day to day (or month to
month)
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Long short term memory (LSTM) accounts for
temporal evolution

@ Vanilla LSTM Recurrent NN architecture
@ One network per Qol
@ Much better than PC, better than MLP
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Graph Structure of ELM Land Model

Looking under the hood helps build physics-informed architecture
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Physics-driven architecture incorporates known
connections into LSTM

Vanilla LSTM Physics-informed LSTM
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NN fits to ELM
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NN fits to ELM

—— MLP
16 - — LSTM
—— Tree-LSTM
14 - 1 == ELM
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NN fits to ELM
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NN fits to ELM

— MLP
16 —— LSTM

—— Tree-LSTM
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NN fits to ELM

—— MLP
16 — LSTM
—— Tree-LSTM
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NN fits to ELM
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NN fits to ELM
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NN fits to ELM
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Price to pay: for NN surrogates, GSA should be carried out with Monte-Carlo

@ Mean estimate: E[f(A\)] ~ L ]ZV: FAM)

N
@ Variance estimate: Var[f(A\)] =~ & 3 f(A™)? — E[f(\)]?
@ Main sensitivity:

S = Var[E(f(A|A\)] ~ 1
T Ve VarfV)]

N
(}V A A UAM) - Blf(A)]
n=1

where A/_(?) u )\E") is a single-column swap sample given two sampling
schemes A and A"
@ ... similar estimators for total sensitivity
@ Inherits all the challenges of Monte-Carlo
[Jansen, 1999; Sobol, 2001; Saltelli, 2002]
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Global Sensitivity Analysis Comparison

GSA comparison for PCE, MLP,LSTM RNN and Tree-LSTM RNN

mm PCE
= MLP
0.251 mEm LSTM RNN
Tree LSTM RNN
0.20
¢ 0.151
0.101
0.05 - \ ]
0.00
£355380858 EREEE
RN SRSt
mbg§2§§§§ 5 288

Parameter

K. Sargsyan (Sandia National Labs) SIAM CSE 2021 ML for ELM March 4, 2021 19/20



Global Sensitivity Analysis Comparison

GSA comparison for PCE, MLP, LSTM RNN and Tree-LSTM RNN
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Summary Thank you!

Overview
@ Key UQ step, surrogate construction == supervised ML
@ Dimensionality reduction via Karhunen-Loéve expansions (aka
autoencoder)
@ Physics-based LSTM architecture outperforms traditional NN
methods (MLP) and traditional UQ methods (PCEs)
@ Qualitatively similar sensitivity results compared to PCE
Current:
@ Employing the reduced-dimensional spatio-temporal surrogate for
calibration and optimal experimental design
Shameless Plug:
@ Postdoc position(s) available at SNL-California at the intersection of
UQ/ML
@ www.sandia.gov/careers — 'View All Openings’, e.g. job id 675390
@ ... or email me at ksargsy@sandia.gov
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Additional Material



ELM Simulation Details
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Tree RNN more accurate than PCE and traditional ML
methods

@ Computed Mean RMS for each Surrogate

Method Train (Daily/Month) Val (Daily/Month)

PCE (N/A)/35% (N/A)/46%

MLP 19/14% 32/20%

LSTM 14/10% 21/16%
Tree-LSTM 6/2% 9/5%

@ Tree-LSTM outperforms PCE, MLP and LSTM-RNN



Global Sensitivity Analysis

oY = f(Xl, XQ, )(37 ey XN)
@ Total Variance decomposition (normalized)

Var(Y) = ElVar(Y|X)] + Var(E[Y|X])

N
o If X; areindependent: V(Y) = > Vi+ > Vii+.+Vi
i=1 1<i<j<N

@ Use Sobol indices — QOI’s variance to be decomposed based on
variances of inputs

Sobol Indices

5= Varx, (BOVIX))  Eiiot Sobol Indices @ PCE allows for analytical computation
Var(Y) of S;
Sy = V:iz;) Second Order Sobol Indices @ ML needs Monte Carlo Integration to

compute S;




Summary of Case Study

Training Details
@ Generate samples from sELM model: 30 years (1980-2009)
@ Each training set (time history) has 10, 950 data points (daily)
@ Simulation at University of Michigan Biological Station site
@ 500 training samples, 500 validation samples

NN Details

PC Details
@ No time dynamics @ Hard to train on daily
@ No physics averages (noisy)

o Train on daily Qols @ Train on monthly averages

o Use Bayesian compressive
e 500 Epochs of SGD  Time dynamics sensing to compute
o 2 layers, 150 neurons o No physics coefficients

o L, loss, dropout regularization © Build surrogate for each

average month, i.e. 30 x 12
@ Time dynamics surrogates
@ Physics




