Physics-informed Machine Learning for Uncertainty Quantification in Land Models

Khachik Sargsyan¹

Cosmin Safta ¹ Vishagan Ratnaswamy ¹ Daniel M. Ricciuto ²

¹ Sandia National Laboratories, Livermore CA

²Oak Ridge National Laboratory, Oak Ridge TN

Virtual JSM Aug 1-6, 2020

Acknowledgements

- DOE, Office of Science,
 - Advanced Scientific Computing Research (ASCR)
 - Scientific Discovery through Advanced Computing (SciDAC) program
 - Biological and Environmental Research (BER)
 - National Energy Research Scientific Computing Center (NERSC)

National Energy Research Scientific Computing Center

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Outline

- Motivation
 - Energy Exascale Earth System Model (E3SM): Land component
- Need for Surrogate Models
 - Polynomial Chaos Surrogate
 - Karhunen-Loève expansions for field quantities
 - Neural Network Surrogates
 - Multilayer Perceptron (MLP)
 - Long short term memory (LSTM)
 - Physics-based LSTM
- Global Sensitivity Analysis (GSA)
- Preliminary Results

E3SM Model Overview

Energy Exascale Earth System Model (E3SM) is a coupled earth model

- US Department of Energy (DOE) sponsored Earth system model https://e3sm.org
- Ocean, Atmosphere, Sea ice and Land Components
- Computationally expensive to run the coupled mode (including ocean and atmosphere)
- $\bullet~$ Can only do a few global simulations of coupled E3SM models $\rightarrow~$ hard to get training data

E3SM Land Model (ELM) Overview

Land model incorporates a set of biogeophysical processes:

- Cheapest component, can run in single column mode
- Simplified python model available (sELM)
- Can evaluate model many times for various input parameters

ELM Produces Time Series given Input Parameters and Forcing Drivers

- $\mathcal{O}(10) \mathcal{O}(100)$ uncertain inputs
- Daily Forcings/Drivers
 - Min/Max Temperature
 - 2 Day of Year
 - Solar radiation
 - Water Availability

Time evolution of a nominal simulation

Surrogates are necessary for **expensive** computational models

 ... otherwise called supervised ML, metamodel, emulator, proxy, response surface.

 $f(x;\lambda) \approx f_s(x;\lambda)$

- Surrogates are required for ensemble-intensive studies, such as
 - parameter estimation
 - uncertainty propagation
 - global sensitivity analysis
 - optimal experimental design

This talk

Investigating surrogate construction approaches for ELM to enable all of the above

K. Sargsyan (Sandia National Labs)

ML for Land Model

Polynomial chaos (PC) surrogate for black-box $f(\lambda)$

• Represent QOIs as orthogonal expansion of random variables

$$f(\boldsymbol{\lambda}) pprox f_c(\boldsymbol{\lambda}(\boldsymbol{\xi})) = \sum_{lpha \in \mathcal{I}} c_lpha \Psi_lpha(\boldsymbol{\xi})$$

- Germ: $\xi = (\xi_1, \xi_2, ..., \xi_d)$, e.g. uniform: $\lambda(\xi)$ is a linear scaling
- Multi-index $\alpha = \{\alpha_1, \ldots, \alpha_d\}$
- Orthogonal polynomials wrt $p(\boldsymbol{\xi}), \Psi_{\alpha}(\boldsymbol{\xi}) = \prod_{i=1}^{d} \psi_{\alpha_i}(\xi_i)$
- Typical construction approach: regression to find PC modes c_{α}
- Advantages of PC
 - moment estimation, uncertainty propagation, global sensitivity
- Expensive model challenge
 - Use Bayesian regression, helps to quantify lack of simulation data
- High-d challenge $d \gg 1$
 - Number of terms in expansion of order p and dimension d:

$$|\mathcal{I}| = \frac{(d+p)}{d!p!}$$

- Use sparse regression
- We employ Bayesian compressed sensing (BCS): iterative algorithm for Bayesian sparse learning [Babacan, 2010; Sargsyan, 2014; Ricciuto, 2018]

'Free' Global Sensitivity Analysis with PC $f(\lambda(\xi)) \simeq \sum_{\alpha \in \mathcal{I}} c_{\alpha} \Psi_{\alpha}(\xi)$

Main effect sensitivity indices

$$S_i = \frac{Var[\mathbb{E}(f(\boldsymbol{\lambda}|\lambda_i)]}{Var[f(\boldsymbol{\lambda})]} = \frac{\sum\limits_{\alpha \in \mathcal{I}_i} c_{\alpha}^2 ||\Psi_{\alpha}||^2}{\sum\limits_{\alpha \in \mathcal{I} \setminus \{0\}} c_{\alpha}^2 ||\Psi_{\alpha}||^2}$$

- \mathcal{I}_i is the set of bases with only ξ_i involved
- S_i is the uncertainty contribution that is due to *i*-th parameter only
- Total effect sensitivity indices

$$T_i = 1 - \frac{Var[\mathbb{E}(f(\boldsymbol{\lambda}|\boldsymbol{\lambda}_{-i})]}{Var[f(\boldsymbol{\lambda})]} = \frac{\sum\limits_{\alpha \in \mathcal{I}_i^T} c_\alpha^2 ||\Psi_\alpha||^2}{\sum\limits_{\alpha \in \mathcal{I} \setminus \{0\}} c_\alpha^2 ||\Psi_\alpha||^2}$$

I^T_i is the set of bases with ξ_i involved, including all its interactions. *T_i* is the total uncertainty contribution due to *i*-th parameter

[Sudret, 2008; Crestaux, 2009; Sargsyan, 2017]

K. Sargsyan (Sandia National Labs) Vi

ML for Land Model

Aug 5, 2020 10/20

Spatio-temporal surrogate model via Karhunen-Loève expansions

- 3183 active land cells over 180 months is > 500,000 outputs
- Karhunen-Loève expansions help reduce dimensionality due to strong spatio-temporal correlations (think of Principal Component Analysis in stochastic space)

$$f(x;\lambda) = \bar{f}(x;\lambda) + \sum_{j=0}^{J} f_j(\lambda) \sqrt{\mu_j} \phi_j(x)$$

- Instead of 500,000 surrogates, we build about J = 2,000 surrogates, one for each eigen-component $f_j(\lambda)$
- End result: a single PC surrogate with *x*-dependent coefficients (i.e. resolving space and time), with about 5% relative error compared to true ELM
- Surrogate ELM is extremely cheap to evaluate and is being used online to calibrate the parameters

Representative results: spatially resolved GSA

K. Sargsyan (Sandia National Labs)

Virtual JSM 20 ML for

20 ML for Land Model

Representative results: time-resolved GSA

Representative results: Bayesian inference and prediction with surrogate

Aug 5, 2020 12/20

Transitioning from UQ technologies to ML

- Polynomial chaos requires smooth Qols
- Exploring transient behavior and daily dynamics requires more accurate surrogates
- Benign MLP, feed-forward network did not do too well

- Does not account for temporal aspect of model
- Cannot propagate information of QOIs day to day (or month to month)

Long short term memory (LSTM) accounts for temporal evolution

- Vanilla LSTM Recurrent NN architecture
- One network per Qol
- Much better than PC, better than MLP

Graph Structure of ELM Land Model

Looking under the hood helps build physics-informed architecture

Physics-driven architecture incorporates known connections into LSTM

Vanilla LSTM

Physics-informed LSTM

K. Sargsyan (Sandia National Labs)

Virtual JSM 20 ML for Land Model

K. Sargsyan (Sandia National Labs)

Virtual JSM 20 ML for Land Model

Aug 5, 2020 17/20

Aug 5, 2020 17/20

K. Sargsyan (Sandia National Labs)

Virtual JSM 20 ML for Land Model

K. Sargsyan (Sandia National Labs)

Virtual JSM 20 ML for Land Model

Price to pay: for NN surrogates, GSA should be carried out with Monte-Carlo

- Mean estimate: $E[f(\boldsymbol{\lambda})] \approx \frac{1}{N} \sum_{n=1}^{N} f(\boldsymbol{\lambda}^{(n)})$
- Variance estimate: $Var[f(\lambda)] \approx \frac{1}{N} \sum_{n=1}^{N} f(\lambda^{(n)})^2 E[f(\lambda)]^2$
- Main sensitivity:

$$S_{i} = \frac{Var[\mathbb{E}(f(\boldsymbol{\lambda}|\lambda_{i}))]}{Var[f(\boldsymbol{\lambda})]} \approx \frac{1}{Var[f(\boldsymbol{\lambda})]} \left(\frac{1}{N} \sum_{n=1}^{N} f(\boldsymbol{\lambda}^{(n)}) f(\boldsymbol{\lambda}_{-i}^{'(n)} \cup \boldsymbol{\lambda}_{i}^{(n)}) - E[f(\boldsymbol{\lambda})]\right)$$

where $\lambda_{-i}^{'(n)} \cup \lambda_i^{(n)}$ is a single-column swap sample given two sampling schemes $\lambda^{(n)}$ and $\lambda^{'(n)}$

- ... similar estimators for total sensitivity
- Inherits all the challenges of Monte-Carlo

[Jansen, 1999; Sobol, 2001; Saltelli, 2002]

Global Sensitivity Analysis Comparison

Global Sensitivity Analysis Comparison

K. Sargsyan (Sandia National Labs)

Virtual JSM 20 M

ML for Land Model

Overview

- Key UQ step, surrogate construction == supervised ML
- Dimensionality reduction via Karhunen-Loève expansions (aka autoencoder)
- Physics-based LSTM architecture outperforms traditional NN methods (MLP) and traditional UQ methods (PCEs)
- Qualitatively similar sensitivity results compared to PCE

Current:

• Employing the reduced-dimensional spatio-temporal surrogate for calibration and optimal experimental design

Additional Material

ELM Simulation Details

Tree RNN more accurate than PCE and traditional ML methods

• Computed Mean RMS for each Surrogate

Method	Train (Daily/Month)	Val (Daily/Month)
PCE	(N/A)/35%	(N/A)/46%
MLP	19/14%	32/20%
LSTM	14/10%	21/16%
Tree-LSTM	6/2%	9/5%

• Tree-LSTM outperforms PCE, MLP and LSTM-RNN

Global Sensitivity Analysis

- $Y = f(X_1, X_2, X_3, ..., X_N)$
- Total Variance decomposition (normalized)

$$Var(Y) = E[Var(Y|X)] + Var(E[Y|X])$$

- If X_i are independent: $V(Y) = \sum_{i=1}^N V_i + \sum_{1 \le i \le j \le N} V_{ij} + ... + V_{1,...,p}$
- Use Sobol indices \rightarrow QOI's variance to be decomposed based on variances of inputs

Method

- PCE allows for analytical computation of ${\cal S}_i$
- ML needs Monte Carlo Integration to compute *S_i*

Summary of Case Study

Training Details

- Generate samples from sELM model: 30 years (1980-2009)
- Each training set (time history) has 10,950 data points (daily)

averages (noisy)

sensing to compute

average month, i.e. 30×12

coefficients

surrogates

- Simulation at University of Michigan Biological Station site
- 500 training samples, 500 validation samples

NN Details MI P PC Details No time dynamics Hard to train on daily No physics Train on monthly averages Train on daily Qols LSTM Use Bavesian compressive 500 Epochs of SGD Time dynamics 2 layers, 150 neurons No physics Build surrogate for each L₂ loss, dropout regularization Tree-I STM Time dynamics Physics