Active Machine Learning with Uncertainties and Gradients: current state and plan ahead

Khachik Sargsyan Eric Hermes, Habib Najm, Judit Zador

ECC Project Meeting, Livermore, CA

Oct 28, 2019

Target: develop capability to incorporate surrogates in PES search mechanisms

- Surrogate = Proxy = Metamodel = Response surface
- Supervised Machine Learning (Surrogate construction = Training)
- Given (x,y) pairs, construct an approximation for y=f(x)
 - x is fingerprint/descriptor
 - y is the energy
- Key requirements:
 - Fast training procedure
 - Surrogate needs to be cheap to evaluate
 - High-dimensionality
 - Respect physics

rih I

FitPy: Lightweight Python library at the intersection of UQ and ML

☆ FitPy Search docs	Docs » FitPy's documentation	View page source
LIST OF MODULES:	FitPy's documentation	

(until recently) Wrapper to

- Polynomial chaos:
 - Least-squares (LSQ)
 - Bayesian compressive sensing (BCS)
- Low-rank tensors (LRT)
- Radial basis functions (RBF)
- Gaussian process (GP)

FitPy: code structure

FitPy: code structure

Using PyTorch to enable autograd

Current capabilities

	Gradient information	Adaptive addition/removal of training points	Surrogate uncertainty
UQTk GP	No	No	Yes
UQTk PC/LSQ/BCS	No	No	Yes
UQTk Low-rank Tensors	No	No	No
Keras/Scikit/PyTorch (NN wrappers)	No	No	No
FitPy LinReg	Coming	Maybe	Yes
FitPy GP	Yes	Yes	Yes
Amp (Atomistic ML Package)	Yes	No	No

h

Connects to Atomic Simulation Environment via Surrogate Calculator

Connecting with ASE will allow to tap into rich set of software and search algorithms

Typical Search Workflow

Typical Search Workflow

Focusing on two major surrogate types

- Gaussian Process Regression (nonparametric):
 - Implemented, cleanup pending
 - Because of linearity, gradient components are also Gaussian
 - PyTorch provides convenient machinery for automatic differentiation
 - E.g. *CatLearn* uses numerical finite difference derivative
 - Adaptive addition/removal of training points

- Sparse Polynomial Regression (parametric):
 - Implementation pending
 - Bayesian compressive sensing is necessary because of high-dimensionality
 - It is a GP afterall, but with a special (and degenerate) covariance.

Adaptivity is implemented via augmented training set

Training set...

- N input points: X is N x d
- N output values: Y is N x 1

Adaptivity is implemented via augmented training set

Training set...

- N input points: X is N x d
- N output values: Y is N x 1
- ... augmented with
- N grad. indicators: G is N x 1 G(i)=0 means Y(i) is value (energy) G(i)=k>0 means Y(i) is gradient wrt k-th dim. (force)

• Allows flexible addition of energy or force components

Gradient information helps

A

Function

Derivative

Gradient information helps

F

Gradient information helps

Adaptation helps even better

Adaptive point addition according to maximal variance in a randomly selected set

Naïve point addition

Adaptive point addition + derivatives

Locality matters

- O3 from PotLib, <u>https://comp.chem.umn.edu/potlib/</u>
- Dimensionality d=9
- Training size N=50
- The smaller the region of interest, the more accurate GP surrogate is.

No surprise, of course!

Scaling study: T = O(N²d²)

 $T=O(d^2)$

Without gradients

With gradients

Current

- Inclusion of gradients/forces
 - both for training and for evaluation
- Evaluation of predictive **uncertainties**
 - necessary for confidence assessment and adaptive methods
- Adaptive construction, locality, trust region
 - to support Sella or other search algorithms

Ongoing improvements

• Hyperparameter optimization,

as well as Max. Likelihood

- More kernels, not just square exponential
- Sparse polynomial regression via

Bayesian compressive sensing

• Usage of descriptors other than Cartesian

h

Plan ahead

- Planning a paper in Virtual Special Issue (VSI) of The Journal of Physical Chemistry A/B/C titled "Machine Learning in Physical Chemistry."
- Current target ML-NEB that scales:

including active learning ideas of locally adding and forgetting training points

building on Koistinen et. al. work, as well as CatLearn