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Plasma Surface Interactions 2:
Predicting the Performance and Impact of

Dynamic Plasma Facing Component Surfaces
Develop and integrate high-performance simulation tools ca-
pable of predicting plasma facing component (PFC) oper-
ating lifetime and the impact of the evolving surface mor-
phology of tungsten-based PFCs on plasma contamination,
including the dynamic recycling of fuel species and tritium
retention, in future magnetic fusion devices.

Partnership jointly funded by FES and ASCR

•Simulating PISCES-A linear device provides experimental
benchmarking for impurity transport model and is a step
towards modeling ITER tungsten components

•Comparison of impurity erosion, ionization, migration, and
re-deposition model to experiment is essential before mov-
ing to more complicated cases

•Understanding sensitivity of impurity transport model to
input parameters will enable quantification of uncertainty
in net erosion, net deposition, and impurity density profiles

•Plasma profiles are measured by reciprocating probe 30cm
upstream from the target and provide profiles for electron
temperature, density, and ion flux

Reciprocating Langmuir probe raw data
showing current and voltage traces used
with fitting to produce temperature and

density

•FASTMath/UQ target: represent and propagate uncertain
input profiles of density and temperature fields

Motivation

•Data on density and temperature

•Parameterize ne and Te profiles
with uncertainty in order to prop-
agate through impurity transport
code, GITR

•Assume data is lognormal

•Assume the fit model is lognormal
with polynomial log-mean µ(x)
and log-stdev σ(x)

•Employ Bayesian inference with
approximate likelihood set to
symmetrized Kullback-Leibler
(KL) divergence
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logLD(c) = −∑N
i=1 [KLi (πM||πD) + KLi (πD||πM)]

• (Log-)normal KL
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∑kσ
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πM ∼ LN (µc(xi), σc(xi))

Model c = (p, q)

Log-Likelihood

∑N
i=1 SKLi(πD, πM)

µd(xi) = ln(yi) − 0.5 ln(1 + s2i /y
2
i )

σ2
d(xi) = ln(1 + s2i /y

2
i )

πD ∼ LN (µd(xi), σd(xi))

Data D = {yi, si}

Posterior predictive profiles Posterior PDFs of polynomial coefficients
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Bayesian Inference of Input Profiles

•Parameterize posterior PDF of polynomial coefficients with
Polynomial Chaos (PC) expansion c = c(ξ)

•Augment ξ = (ξ1, . . . , ξK) with the input profiles stochastic-
ity ξK+1 to get ξ̃ = (ξ, ξK+1)

•Propagate input profiles...

f (x; ξ̃) = exp
(
µc(ξ)(x) + σc(ξ)(x)ξK+1

)

• ... through any model G (GITR in this case)

G(f (x; ξ̃)) = g(ξ̃) =

J∑

j=0

gjΨj(ξ̃)

Uncertainty Propagation via PC
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Uncertainty in density profile ne is
the main contributor to output variance

GITR Prediction and Uncertainty Attribution

•Formal UQ for representing uncertain input profiles
•Uncertainty propagation through GITR, the impurity migra-

tion module of an integrated simulation for plasma surface
interactions
•UQ Toolkit has been employed for both Bayesian inference

and PC representations (www.sandia.gov/uqtooolkit)
•Next, augment the input profiles with the rest of the uncertain

inputs, deal with the high-dimensionality

Summary


