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Outline

@ Forward Modeling

e Surrogate construction via Polynomial chaos (PC)
o Global sensitivity analysis (GSA) for parameters
e Key challenge: high-dimensionality

@ Bayesian compressive sensing

@ Inverse Modeling

e Bayesian calibration of the surrogate
e Key challenge: model structural error
o Embedded model error

@ Predictive uncertainty attribution
o GSA with data noise, parameter uncertainty and model error

@ Climate Land Model application

Sandia National Labs ICIAM July 19, 2019 1/20



Polynomial chaos (PC) surrogate

@ Model of interest f(-) y=f(A)

e Expensive to evaluate, e.g. climate land model
e High-dimensional, i.e. A € R¢ with large d (~ 50 — 100)
e Usually not feasible to look under the hood

@ Need to develop a parametric surrogate to replace the model in
ensemble-intensive studies:

e sensitivity analysis N
o calibration fe(X) = f(N)

e optimal experimental design

@ Polynomial chaos surrogates are convenient

e moment estimation =
@ uncertainty propagation fe(N) = 3251 axVi(N)
o global sensitivity analysis (GSA)
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Global Sensitivity Analysis with PC (3 ~ 3 iy

@ Main effect sensitivity indices

o _ VarBUGOW) _ Sier, &l
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e I, is the set of bases with only \; involved
e S; is the uncertainty contribution that is due to i-th parameter only

@ Total effect sensitivity indices

 VarE(fAN=)]  Zkerr I[P
Var[fN] Yol Wil

T, =

e 17 is the set of bases with )\; involved, including all its interactions.
e T; is the total uncertainty contribution due to i-th parameter
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Moment estimation or GSA:
usually better to prebuild and work with the PC surrogate
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... except when high-d, making surrogate construction challenging
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High-d PC surrogate with compressive sensing

FO) = feN) = Ty ar¥ie(N)

@ Given an ensemble of model evaluations f = f(A®), fori =1, N
@ PC coefficients are found by regression argming || f — Pcl|2
@ Usually truncating PC bases up to a given total degree....

@ ... leads to infeasibly large basis set: K = (d + p)!/(d'p!) > N

@ Compressive sensing, LASSO, basis pursuit: regularized
regression
arg min {||f ~ Pell3 + a e}

@ .. orargming||f — Pc|la St ||c]ji <e
@ ... orargming||c||s st ||f —Pcllz2<e¢
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Compressive sensing: enhancements
Likelihood Prior

—
@ Bayesian extension: argming{||Z — Pc||3+ al|c||1 }
o Get coefficients with uncertainties
e Fights overfitting better
e Connections with relevance vector machine (RVM)

@ Weighted regularization
o Always better, if you know how to weigh

@ lterative growth of polynomial basis
e Exploit the structure of polynomial bases for smarter search
o An iterative procedure that allows increasing the order for the
relevant basis terms while maintaining the dimensionality reduction
[Sargsyan et al. 2014], [Jakeman et al. 2015].
e lterations inform the weighting procedure
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BCS removes unnecessary basis terms

 Model data
=

/

Initial Basis ——

N

|

Weighted
BCS

lterations

Basis
Growth
Reweighting

Sandia National Labs

ICIAM

July 19, 2019

7120



3
Application of Interest: EBSM Land Model @SM

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components

@ High-resolution, employ DOE leadership-class computing facilities
@ Large number of uncertain input parameters
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Sparse PC surrogate and uncertainty decomposition
for the E3SM Land Model

@ Main effect sensitivities : rank input parameters
@ Joint sensitivities : most influential input couplings
@ About 200 polynomial basis terms in the 50-dimensional space
@ Sparse PC will further be used for
sampling in a reduced space
parameter calibration against experimental data
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Sparse PC surrogate and uncertainty decomposition
for the E3SM Land Model

@ Main effect sensitivities : rank input parameters

@ Joint sensitivities : most influential input couplings

@ About 200 polynomial basis terms in the 50-dimensional space
@ Sparse PC will further be used for

sampling in a reduced space
parameter calibration against experimental data

Site # 51 Site # 51
GPP TOTVEGC
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Surrogate-enabled calibration and prediction workflow

f
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B Inverse UQ Any model

Sandia National Labs ICIAM July 19, 2019 10/20



Elephant in the room: model error g(x) = f(z;\)

deviation from ‘truth’ or from a higher-fidelity model

e ... otherwise called (with slightly altered meanings):
model discrepancy, model structural error,
model inadequacy, model misspecification,
model form error, model uncertainty

e Inverse modeling context
Given experimental or higher-fidelity model data,
estimate the model error

e Represent and estimate the error associated with
Simplifying assumptions, parameterizations
Mathematical formulation, theoretical framework

e _..will be useful for
Model validation, comparison
Scientific discovery and model improvement
Reliable computational predictions
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Ignoring model error leads to
overconfident and biased predictions

e o Data, N=5

=1.0 -0.5 0.0 0.5 1.0
X

Model-data fit

@ Given noisy data, calibrate an exponential model:  g(z) =~ f(x; A)
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Ignoring model error leads to
overconfident and biased predictions

e Data, N=5
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@ Given noisy data, calibrate an exponential model:  g(z) =~ f(x; A)
@ Employ Bayesian inference to obtain posterior PDFs on A
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Ignoring model error leads to
overconfident and biased predictions

* Data,N=5
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@ Given noisy data, calibrate an exponential model:  g(z) =~ f(x; A)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(z, A)
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Ignoring model error leads to
overconfident and biased predictions

1. 1.
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@ Given noisy data, calibrate an exponential model:  g(z) &~ f(x; \)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(z, \)
@ Higher data amount reduces posterior and predictive uncertainty
e Increasingly sure about predictions based on the wrong model
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Ignoring model error leads to
overconfident and biased predictions

* Data, N = 50
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@ Given noisy data, calibrate an exponential model:

g9(@) & fz;\)
@ Employ Bayesian inference to obtain posterior PDFs on A

@ True model — dashed-red — is structurally different from fit model f(z, \)
@ Higher data amount reduces posterior and predictive uncertainty
e Increasingly sure about predictions based on the wrong model
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Ignoring model error leads to
overconfident and biased predictions

1. 1.
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@ Given noisy data, calibrate an exponential model:  g(z) = f(x; \)

@ Employ Bayesian inference to obtain posterior PDFs on A

@ True model — dashed-red — is structurally different from fit model f(z, A)

@ Accounting for model error allows extra uncertainty component to propagate
through predictions
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Calibrate f(x;\), given data g(z)

x are operating conditions, design parameters, various Qols
A are model parameters to be inferred/calibrated

@ Default:  Ignore model errors: g(@) = FlziA) e
e Biased or overconfident physical parameters
e Wrong model predictions

@ Conventional: Correct for model errors: g(z) = fz;4) +6(z) + e

Physical parameters are ok

e Wrong model predictions (data-specific corrections)
e Model and data errors mixed up

@ What we do: Correct inside the model: 9(z) = f(z;A +6(2)) + e

Embedded model error

Preserves model structure and physical constraints
Disambiguates model and data errors

Allows meaningful extrapolation
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Bayesian Framework for Model Error Estimation

¥ = f(zs A+ 0a) + &

@ Given data y;, perform simultaneous estimation of & = (A, a),
i.e. model parameters A\ and model-error parameters a.

@ Bayes’ theorem

Likelihood Prior
Posterior —N—

NN
Gl = p(ylgz)y)p(a)

Evidence

@ In order to estimate the likelihood L, (&) = p(y|&) = p(y|A, ),
one needs uncertainty propagation through f(z;; A + d,),
——

stochastic

@ ... hence, we employ Polynomial Chaos (PC) representation for .

Sandia National Labs ICIAM July 19, 2019 14 /20



.. back to toy example

e o Data, N=50

1.0| — Predictive mean
[ Predictive stdev
True function

« « Data, N =50

— Predictive mean

= Predictive stdev
True function

L35 =05 00 05 T0
X X
4 PDF of ), PDF of \,
4
5
35 _ . _
39 N= 4 N
24 — N=20 ] . N=20
< “
ig — N=50 i — N=50
B — N=100 — N=100
5 1
6 0.7 0.8 09 1.0 1.1 .6 0.7 08 09 1.0 11
Joint PDF of (3,,) 3 PDF of A, Joint PDF of (1,,,) . PDF of ),
1 N EE!
3.0
2
14 2.5
< 15 2.0
15
10
1.4 1.
3 05
1Uﬁ 0.8 1.0 2 1.4 1.6 18 0.6 0.8 1.0 0. 2 14 16 1.8
A X A\ A

Sandia National Labs ICIAM July 19, 2019 15/20



Model error embedding — workflow

Calibration

[:] Forward modeling

C] Inverse modeling
Embedded
Model Surrogate model Data
( ) ~ GSA/BF [ _
fl@ish Flzisn) Flas A +8a(6)) Likelihood vi

Prior p(A, )

\Iireprocess

Any Qol

[ Prediction p(h(z)|y) ]4—[ h(z; A+ 6a(8)) ]4—[ Posterior p(\, aly) ]
,/

Predictive uncertainty decomposition: Total Variance =

Prediction

Parametric uncertainty + Data noise + Model error + Surrogate error
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Model error embedding — workflow

/Calibration

D Forward modeling

D Inverse modeling
Embedded

Model Surrogate model /\ Data
GSA/BF [ _
flzs A) Fl@is A+ 6a(8)) Likelihood

Fl@i; A
L

Prior p(\, a)

\Iireprocess

/ Any Qol

l Prediction p(h(z)|y) ]—[ h(@; A + 6a(8)) ]4—[ Posterior p(\, aly) ]

Prediction

o =Ea[o}@)]+ Valu@)] + (@) + s
Model error Posterior uncertainty ~ Surrogate error  Data noise
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E3SM Land Model (ELM) &=

@ Demo for Park Falls site (WI)
@ Gross Primary Productivity (GPP) observations
@ Predictive variance decomposition on the right:
essentially a glorified GSA into components due to
e Surrogate error
e Posterior uncertainty
o Model error

US-PFa US-PFa
¢ Data
. Prior
Emm Posterior

Z \ Z
of ¢ 4 \++ o ¢

] F M A M ] J A S o] N D ]
Month
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Energy Exascale

Earth System Model

E3SM Land Model (ELM) &=V

U of Michigan Biological Station

e Data —— Mean prediction I Surrogate error

EE Posterior uncertainty

LHF, W/m?

@ Conventional calibration without model error
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E3SM Land Model (ELM) &=V

U of Michigan Biological Station
1501 e Data —— Mean prediction Model error I Surrogate error EE Posterior uncertainty

@ Predictive variance decomposition with model-error component
@ ... with predictive uncertainty that captures model error
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Energy Exascale
Earth System Model

E3SM Land Model (ELM) &=V

1 U of Michigan Biological Station
8 —— Mean prediction I Surrogate error EE Posterior uncertainty
6
a
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0
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Month

@ Predictive variance decomposition with model-error component

@ Allows meaningful prediction of other Qols
(e.g. no data/observable)
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E3SM Land Model (ELM)

NPP
o v s o w

Energy Exascale
Earth System Model

U of Michigan Biological Station

—— Mean prediction Model error I Surrogate error EE Posterior uncertainty

12 24 36 48 60 72 84
Month

@ Predictive variance decomposition with model-error component
@ Allows meaningful prediction of other Qols

(e.g. no data/observable)

@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM)

LHF, W/m?

Energy Exascale
Earth System Model

Tonzi Ranch Site
120

100 e Data —— Mean prediction I Surrogate error EE Posterior uncertainty

B
72 84 96 108 120 132
Month

@ Predictive variance decomposition with model-error component
@ Allows prediction at other sites
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E3SM Land Model (ELM)

LHF, W/m?

Energy Exascale
Earth System Model

Tonzi Ranch Site
120
w00l * Data —— Mean prediction Model error

I Surrogate error EE Posterior uncertainty

72
Month

@ Predictive variance decomposition with model-error component
@ Allows prediction at other sites

@ ... with predictive uncertainty that captures model error
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Summary

@ Forward UQ:
e Polynomial chaos surrogate construction for complex models
o High-D challenge: sparse PC via Bayesian compressive sensing

@ Inverse UQ:
e Bayesian inference for parameter estimation
o Model error challenge: embedded model error representation
@ All developments done within UQTK, lightweight C++/Python library

out of SNL-CA (www.sandia.gov/ugtoolkit) UQlk

We are hiring!

Postdoctoral Position UQ-in-Climate at Sandia National Labs
Go to Sandia careers’ website and look for job ID 668176
Experience with UQ, climate modeling, coding.

Salary $90K+/year, in Livermore, CA
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Additional Material



Basis set growth: simple anisotropic function
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Basis set growth: ... added outlier term
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Where to put model error?

@ OQutside:

yi = f(zi; A) + 6(z:) + €

Explicit GP representation [Kennedy-O’Hagan, 2001]

See also [Higdon et. al, 2004], [Bayarri et. al, 2007]

Usage: too many to cite

Variants exist: multiplicative noise, non-linear maps etc.

@ Inside:

yi = f(xs A, 0(x5)) + &

Increased use, especially in physical models: [Emory et. al, 2011] [Oliver and Moser,
2011], [Morrison et. al, 2016], [Sondak et. al, 2017], [Huan et. al, 2017], [Rizzi et. al,
2018]...

Engineering/statistical adjustment [Joseph and Melkote, 2009]

Additive corrections to submodels [Strong et. al, 2011]

Validation of extrapolative predictions [Oliver et. al, 2014]

Field inversion and machine learning [Duraisamy et. al, 2015-]

Hybrid correction [He and Xiu, 2016]

Random field correction [Brown and Atamturktur, 2016]

Hierarchical mixture model [Feng, 2017]

Parameter inflation [Pernot et. al, 2017]

Hierarchical stochastic model [Wu et. al, 2017]

Dynamic discrepancy [Bhat et. al., 2017]



More data leads to ‘leftover’ model error

Callibrating a quadratic f(x) = Ao 4+ A1z + A22®

w.rt. ‘truth’ g(z) = 6 + 2® — 0.5(x + 1)*® measured with noise o = 0.1.

Summary of features: “R
@ Well-defined model-to-model calibration N\
@ Model-driven discrepancy correlations
@ Respects physical constraints
@ Disambiguates model and data errors

@ Calibrated predictions of multiple Qols
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