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Overview

Machine learning for interatomic potentials (MLIP)

Active learning (AL) strategies

Linear regression, moment tensor potentials (MTP)

AL for MLIP
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Main target: PES approximation

E = f (x)

x is coordinates/descriptors E is energy

Accurate and fast surrogates for PES to replace QM computations
for studies requiring many PES inquiries

saddle point search, transition paths, barrier heights
rapid assessment of reaction characteristics
automate the discovery of reactive pathways
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ML Interatomic Potentials

Partition the interatomic interaction energy into individual
contributions of the atoms (and sometimes bonds, bond angles,
etc.)

Assume flexible functional forms of such contributions
Function of positions of the neighboring atoms
O(100) parameters

Require the energy, forces and/or stresses predicted by a MLIP to
be close to those obtained by a QM model on some atomic
configurations

Training set, training/fitting
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MLIP - desired features

Good input descriptors

Accurate, fast-to-evaluate, analytic derivatives

High-dimensional, flexible functional form

Transferable/generalizable to unseen atomic configurations

Systematic improvement and tunability, e.g. reach arbitrary
accuracy with more parameters and more training data

Account for physics:
invariant with respect to translation,rotation, and reflection of the
space, and also permutation of chemically equivalent atoms

Locality (depend on surrounding atoms only within a finite cut-off
radius), but remain smooth with respect to atoms entering and
leaving the local neighborhood
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ML for PES
Weighted interpolation [Ischtwan 1994; Dowes, 2007-09; Maisuradze, 2009]

Permutationally invariant polynomials [Xie, 2010]

Gaussian processes [Bartok, Csanyi 2010-15; Mills, 2012; Rupp, 2013; Cui, 2016;

Uteva, 2017; Guan, 2018; Schmitz, 2018]

Low-rank tensor expansions [Jackle, 1996; Baranov, 2015; Rai, 2017, 2018]

Support vector machines, kernel regression [Le, 2009; Balabin, 2011;

Dral, 2017]

Neural networks (NN) [Blank, 1995; Tai No, 1997; Prudente, 1998; Lorenz, 2004;

Witkoskie, 2005; Manzhos, 2006-09; Malshe, 2008; Le, 2009] [Behler, 2010-16; Handley,

2010, 2014; Jiang, 2013; Li, 2013; Dolgirev, 2016; Khorshidi, 2016; Peterson, 2016; Carr,

2016; Kolb, 2016; Shao, 2016; Chmiela, 2017; Cubuk, 2017; McGibbon, 2017; Smith,

2017; Schutt, 2017; Yao, 2017; Hajinazar, 2017; Bereau, 2018; Lubbers, 2018; Unke,

2018; Wang, 2018; Natarajan, 2018; Zhang, 2018; Onat, 2018]
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Main ingredients for supervised ML

Input
x ∈ R3N

Fingerprint
z ∈ RM

Fcn Form
fp(z) Fit Data

E

Cartesian Morse
Symm. Fcn

PIP
Zernike
Gaussian

Bispectrum

NN
GAP

Regression
Low-rank Tensor

SVM

minp ||E − fp(z)||
RMSE
MAE

Regularization
Force Field

ab initio
DFT

Training data (xi,Ei) for i = 1, . . . , S, and xi ∈ R3N

ab initio, DFT
Input representation, aka fingerprint, aka descriptor

(zi,Ei)

Parameterized functional form of the approximation class

fp(z)

Loss function
min

p

S∑
i=1

(Ei − fp(zi(x)))2
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Functional Forms

Linear Regression f (x) =
∑K

k=0 ckΨk(x)

Polynomial basis
Radial basis functions

Low-Rank Tensor Expansion f (x) =
∑R

r=1 cr
∏d

j=1 Ψrj(xj)

Canonical format
Tensor-train format

Gaussian processes P(f |D)

Hierarchical correction
Flexible kernels

Neural Networks f (x) = ...W3σ(W2σ(W1x + b1) + b2) + b3

Multilayer Feed-Forward NN
Convolutional NN
Recurrent NN
...
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Key target in this work: good training set

Extrapolation (prediction outside the training domain) is
dangerous always

e.g., predict the double vacancy formation energy if only single
vacancies are present in the training set It is hardly expected that a
MLIP can extrapolate beyond the training domain, but even
developing a reliable problem-specific MLIP that would accurately
interpolate within the training domain is nontrivial

Naive idea: Sample the entire space of atomic environments
within a constraint on the minimal interatomic distance. It is,
however, not clear how to do this with sufficient accuracy due to
high dimensionality of the space of atomic neighborhoods.
Perturb from a ‘good’ set of configurations
Sampling from an ab initio MD, or from a classical MD with
empirical or ML potential

None of these are bulletproof, and leave gaps or are forced to
extrapolate.
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Active Learning

The key idea behind active learning is that a machine learning
algorithm can achieve greater accuracy with fewer training samples if it
is allowed to choose the data from which is learns.
(We call this OED, with a slight stretch of the meaning).

AL approaches
Detect extrapolative configurations on-the-fly and get QM data for
those
Select a batch of extrapolative configurations offline, a priori

Key: query strategy, whether to query QM or not. If such decision
can be made reliably, then one does not need to start with a very
good training set
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Active Learning Scenarios

[B. Settles, “Active learning literature survey”, Computer Sciences Technical Report 1648,

University of Wisconsin-Madison, 2009]
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Query Strategies

Uncertainty sampling: an active learner queries the instances about which it is
least certain how to label. Straightforward for probabilistic models.

Query-by-committee: committee of competing models, that are consistent with
the current training set. The most informative query is considered to be the
instance about which they most disagree. Key is to have a meaningful set of
models. Need a measure of disagreement. Again, Bayesian/probabilistic is the
best bet, but there are also non-probabilistic methods such as query-by-boosting
and query-by-bagging.

Expected model change: which query would lead to greatest model change,
e.g. largest gradient length.

Variance Reduction and Fisher Information Ratio: in regression setting,
minimizing the variance component of generalization error (usually some sort of
approximation or via Fisher)

Estimated error reduction: Estimate the expected future error that would result
if some new instance x is labeled and added to training set, and then select the
instance that minimizes that expectation. Naively retrain with all potential new
points. Practical if incremental training is possible, e.g. GP, or linear MLIP such
as in this paper.
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AL: connections

Semi-supervised learning, data augmentation: making the most out of
unlabeled data. E.g. self-training in which the learner is first trained with a small
amount of labeled data, and then used to classify the unlabeled data. Typically
the most confident unlabeled instances, together with their predicted labels, are
added to the training set, and the process repeats. AL uncertainty sampling is
the opposite: the instances about which the model is least confident are selected
for querying.

Reinforcement learning: it is easy to converge on a policy of actions that have
worked well in the past but are sub-optimal or inflexible. In order to improve, a
reinforcement learner must take risks and try out actions for which it is uncertain
about the outcome, just as an active learner requests labels for instances it is
uncertain how to label. Exploration-exploitation trade-off in the reinforcement
learning literature.

Optimal Experimental Design

Further possible enhancements to query strategies
incorporate weights to reduce outlier choice
incorporate cost of acquisition
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AL for interatomic potentials

[S.L. Frederiksen, K.W. Jacobsen, K.S. Brown, J.P. Sethna, “Bayesian ensemble approach to

error estimation of interatomic potentials”, Phys. Rev. Lett. 93:16, 2004]: Bayesian query,
shows that Bayesian error is a good placeholder for the true
discrepancy (with empirical potentials)

[J. Behler, “Representing potential energy surfaces by high-dimensional neural network

potentials”, J. Phys. Condensed Matter 26:18, 2014] NNs with different architectures,
the one point where they disagree the most, is the new selected point.

[V. Botu, R. Ramprasad, “Learning scheme to predict atomic forces and accelerate materials

simulations”, Phys. Rev. B 92:9, 2015] train a machine learning model predicting
the force errors based on the distance between a given atomic
configuration and the training set. In the kernel ridge regression
context.
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This work applies directly to linear MLIP only

ri = (ri1, . . . , rin) : neighborhood, a collection of vectors from atom i to
its neighbors within a cut-off Rcut > 0.

Total energy is

E(x) =

N∑
i=1

V(ri)

Linearity in parameters θ:

V(ri) =

m∑
j=1

θjBj(ri)

or

E(x) =

m∑
j=1

θjbj(x)
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Bases are contractions of Moment Tensor Potentials
[A.V. Shapeev, “Moment tensor potentials”, Multiscale Model. Simul. 14:3, 2016]

V(ri) =

m∑
j=1

θjBj(ri)

MTP bases are

Bα(ri) =
∑
γ∈Nk

(
k∏

l<m

(ri,γm · ri,γl)
αm,l

)(∏
l

fαl,l(|ri,γl |)

)
In practice, Bα are tensor contractions of tensor-valued descriptors

Mµ,ν(ri) =
∑

j

fµ(rij) rij ⊗ rij ⊗ · · · ⊗ rij︸ ︷︷ ︸
ν times

where µ, ν depend on α. Interpreted as moments of inertia: if fµ(rij) is the
weight of atom j in neighborhood of atom i, then Mµ,0 is the neighborhood
mass, Mµ,1 is the vector of first moments of inertia, etc...
Provably approximate any regular function satisfying all the needed
symmetries, since this is a basis for the set of all polynomials invariant with
respect to permutation, rotation, and reflection.
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Linear regression

E(xi) = yi ≈
m∑

j=1

θjbj(xi)

In matrix notation: y ≈ Aθ, with a design matrix Aij = bj(xi).
Least-squares solution is

θ = (ATA)−1ATy

Covariance estimate of the solution Σθ ∝ (ATA)−1
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Optimality options

Straight out of wiki...
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D-optimality, three strategies employed

There is an efficient matrix algo for checking D-optimality (MaxVol,
see below)
Appealing mathematical interpretations, such as decreasing the
uncertainty in determining the parameters or maximizing the
volume spanned by the training set in the space of configurations,
thus avoiding extrapolation.
Can be applied to any linear potential, e.g. SNAP or GAP, not just
MTP

QS1: Only look at energy values. Maximizes the volume of the simplex
in Rm formed by m descriptor vectors.
QS2: Look at energies, forces and stresses.
QS3: Also fit the neighborhood basis separately for each atom i.
“Catches” configurations with the most different atomic neighborhoods
in the sense of the D-optimality criterion.
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Details of the method, focus on QS1

[E. Podryabinkin, E. Tikhonov, A. Shapeev, A. Oganov, “Accelerating crystal structure prediction

by machine learning interatomic potentials with active learning”, Phys. Rev. B 99, 2019]

y ≈ Aθ is solved by θ = (ATA)−1ATy

Assume the number of training points is the same as basis size (not
crucial), so θ = A−1y

Minimizing |A−1| is maximizing |A|.
Form a row-vector c = (b1(x∗), . . . , bm(x∗))A−1.

Two parallel interpretations:

Replacing k-th row of A with (b1(x∗), . . . , bm(x∗)) increases its
determinant by |ck|.
E(x∗) =

∑m
i=1 ciE(xi), so max |ci| is the degree of extrapolation! If

all |ci| < 1, we are interpolating. Kind of.

It remains to compare max |ci| with a γthr > 1.
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MaxVol algorithm, relevant for QS2 and QS3

[S. Goreinov, I. Oseledets, D. Savostyanov, E. Tyrtyshnikov, N. Zamarashkin, “How to find a good

submatrix”, in: Matrix Methods: Theory, Algorithms, Applications, Word Scientific, 2010.]
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AL algorithm employed in this work
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Full Workflow
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Toy example

Black dotted line: true function
Red dashed line: best fit minimizing L2 distance
Blue solid line: AL chooses the end-points as the optimal points
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Errors of fitting of as basis set grows

RMS fitting errors in energy, forces and stresses for MTPs with
different number of basis functions.
The root-mean-square (RMS) and the maximum errors are
reported.
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Extrapolation grade correlates with actual error

Atomistic simulations of Lithium
Each point is an MD time step
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Comparison (of hyperparameters) studies

Based on our experience, we find that a value for γthr between 2 and 11
is a good choice in practice: it does not significantly reduce the
accuracy, while the number of the QM calculations is just a few times
higher than the theoretical minimum (which is equal to the number of
undetermined parameters).
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AL reduces the QM calculation count

If a potential is trained on a fixed database, it is observed that once in about
15ps the atomistic system escapes into an unphysical region characterized
by very low (below 1 A) bond lengths. Therefore, to assess the reliability of a
potential, we terminate the MD if after some simulation time the minimal
distance between atoms becomes smaller than 1.5 A. We call the simulation
time after which half the trajectories are terminated (i.e., the trajectory
half-life), the failure time. From the transition state theory, we estimate that in
an AIMD, the failure time is of the order of 1010 s, which is much larger than is
accessible even with a classical MD.
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Train at one temperature and predict at another
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Relaxation to known configurations

Found all the benchmark configurations when relaxing the
active-learned MTPs.
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Errors of fitting of different AL approaches
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Reliability/transferability

Finally, we have performed a test of reliability when the potentials are
trained offline. We use the potentials from the previous test fitted on

MD trajectories at T=300 K and use them in MD at T=300 K and T=450
K. We measure the failure time, i.e., simulation time until the minimal
interatomic distance becomes less then 1.5 A. We performed 100 MD

runs and calculated the expected failure time for different MTPs.
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Summary/Discussion

Does not reduce the accuracy of interatomic potentials while
always keeping the MD trajectory within the physical region
Overhead of algorithm and retraining is small compared to QM
calculation
Is not MD-specific - can be applied to, e.g., structure relaxation,
Monte-Carlo sampling, nudged elastic band etc..
Detects when extrapolation is attempted and retrains the potential
on those configurations
Controls the degree of extrapolation
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Summary/Discussion - cont’d

One can apply AL to atomistic systems with any number of
chemically different types of atoms, however, most linearly
parametrized potentials developed to date are only applicable to
systems with a single type of atoms.

In addition, we show that even without learning on the fly, AL can
optimize the training set, in the sense of extracting a significantly
smaller subset, training on which reduces the maximal error and
improves transferability.

This query strategy is based on geometrical information (atomic
positions and supercell vectors) of a configuration and does not
use the QM data, thus a well-trained potential will trigger the QM
calculations very rarely.

Code is here: http://gitlab.skoltech.ru/shapeev/mlip/
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