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Forward UQ

Given input parameter uncertainty, 
find output QoI distributions

• Uncertainty propagation, model surrogate construction
• … otherwise called emulator, proxy, metamodel, response

surface
• Global Sensitivity Analysis (GSA):

• variance-based decomposition,
• Sobol sensitivities

Major challenges

• Large number of input parameters
(curse of dimensionality)

• Strong nonlinearities of input-output maps
• Expense of forward simulations

Main tools

• Polynomial Chaos surrogates are ideally fitted for
parameter uncertainty propagation and surrogate
construction, also providing free access to GSA

• Weighted Iterative Bayesian Compressive Sensing
(BCS) builds accurate surrogate models adaptively to
enable forward UQ for large number of inputs and
few forward simulations

Inverse UQ

Given experimental/observational data, 
find input parameter distributions

• … otherwise called calibration, tuning, parameter
estimation

Major challenges

• Large number of input parameters (curse of
dimensionality)

• Physical constraints, identifiability, data
scarcity

• Model structural errors

Main tools

• Bayesian calibration is well-suited for
accounting uncertainties from various
sources, e.g. observational noise, parametric
uncertainties, internal stochasticity

• Internal model error embedding approach
to enable structural error representation and
quantification, followed by accurate
predictions (even extrapolatory!) with fair
assessment of all sources of uncertainty,
including structural errors

UQ Workflow

• git clone git@github.com:ACME-Climate/Uncertainty-Quantification.git
• Python interface to UQTk v3.0 (www.sandia.gov/uqtoolkit)
• Full workflow is non-intrusive, i.e. model runs as a black-box
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Software 

Selected ELM Results

1. Surrogate construction
• Perturbed parameter ensemble
• Prior predictive distribution
• Global sensitivity analysis
• Dimensionality reduction

2. Model structural error embedding
• Model correction
• Can be non-intrusive!
• Respects physics
• Disambiguated with data error

3. Calibration/tuning
• Bayesian inference
• Adaptive Markov chain Monte Carlo
• Posterior analysis and model 

selection
4. Prediction

• Posterior predictive
• Output uncertainty decomposition
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GSA for gross primary productivity (GPP) 
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showing monthly changes in sensitivities over a 3-year period

Results from a calibration of monthly latent heat flux data at the Missouri Ozark 
flux. This calibration method partitions posterior uncertainties into errors from 

the surrogate model representation, posterior uncertainty and model error.
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