Overview of Uncertainty Quantification Methods for Complex Models

Khachik Sargsyan (SNL-CA), Cosmin Safta (SNL-CA), Daniel Ricciuto (ORNL)

EES Modeling PI Meeting Data, Metrics, and Diagnostics November 5-9, 2018 Potomac, MD

K. Sargsyan (ksargsy@sandia.gov)

EESM PI Meeting

Overview of Uncertainty Quantification Methods for Complex Models

Khachik Sargsyan (SNL-CA), Cosmin Safta (SNL-CA), Daniel Ricciuto (ORNL)

This work was supported in part by:

The Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER).

The U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR) and Office of Biological and Environmental Research (BER) hrough Advanced Computing (SciDAC) program through the FASTMath Institute and the OSCM project.

Uncertainty Quantification and Computational Science

Forward problem

1

Uncertainty Quantification and Computational Science

Inverse & Forward problems

Uncertainty Quantification and Computational Science

Inverse & Forward UQ

Uncertainty Quantification and Computational Science

Inverse & Forward UQ Model validation & comparison, Hypothesis testing

K. Sargsyan (ksargsy@sandia.gov)

EESM PI Meeting

November 6, 2018

Forward UQ

• Local sensitivity analysis and error propagation

This is ok for:

- small uncertainty
- low degree of non-linearity
- Non-probabilistic methods
 - Evidence theory
 - Fuzzy logic
 - Interval math
 - Misses correlations

• **Probabilistic methods** – our focus

Probabilistic Forward UQ

Uncertain inputs/outputs as random variables

 $y = f(\lambda)$

- Default way sampling:
 - Random sampling, MC/QMC
 - Generate random samples $\{\lambda_i\}_{i=1}^N$ from the PDF of λ , $p(\lambda)$
 - Evaluate the model $y_i = f(\lambda_i)$, construct p(y) or gather statistics
 - Slow convergence of MC/QMC \Rightarrow infeasibly large N required
- Build a cheap surrogate for $f(\lambda)$, then use MC
 - Collocation interpolants
 - Regression fitting
- Polynomial Chaos (PC) is a convenient machinery

Polynomial Chaos – functional representation for RVs

- First introduced by Wiener, 1938
- Revitalized by Ghanem and Spanos, 1991
- Think of Fourier-type expansion
- Convergent series if U has finite variance
- Selection of order p is a modeling choice
- Describes a r.v. U with a vector of PC modes (u_0, u_1, \ldots, u_p)
- Utility
 - Moments: $\mathbb{E}[u] = u_0, \ \mathbb{V}[u] = \sum_{k=1}^{K} u_k^2 ||\Psi_k||^2, \ \dots$
 - Global Sensitivities fractional variances, Sobol' indices
 - Uncertainty propagation
 - Surrogate for forward model

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maître & Knio, 2010]

Challenges in Forward UQ

- Large number of input parameters
- Expense of a single model simulation
- Build PC surrogates with regression
 - still relying on an ensemble of simulations, but
 - call it a supervised machine learning, if you wish
 - actually, use Bayesian regression to have uncertainties capturing lack-of-information
- Specific to polynomial bases, employ vast literature on sparse learning [Tipping, 2001]
 - Bayesian compressive sensing [S. et al., 2014; Ricciuto, S., Thornton, 2018]

$$Z = f(\boldsymbol{\xi}) \approx \sum_{k=0}^{K} c_k \Psi_k(\boldsymbol{\xi})$$

$$\Psi_k(\xi_1, \xi_2, \dots, \xi_d) = \psi_{k_1}(\xi_1)\psi_{k_2}(\xi_2)\cdots\psi_{k_d}(\xi_d)$$

Final Basis

Weighted BCS

Initial Resi

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 50 input parameters, but ~ 6 contribute to most of the variance,

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 50 input parameters, but ~ 6 contribute to most of the variance,

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 50 input parameters, but ~ 6 contribute to most of the variance,

Inverse UQ

- Parameter fitting, tuning
- Statistical inference problem
- Given ...
 - ... model output Qol $y \approx f(x; \lambda)$
 - ... observational data $\{x_i, y_i\}_{i=1}^N$
 - Find model parameters λ

- Prior $p(\lambda)$: expert knowledge, or uninformative
- Posterior $p(\lambda|y)$: updated 'knowledge' of λ , given data y
- Likelihood $L(\lambda) = p(y|\lambda)$: key, noise/error model, encapsulates assumptions about data collection
- Evidence p(y): not important for parameter (coeff. λ) estimation; crucial for model selection via Bayes factor (Occam's razor)

Inverse UQ

- Parameter fitting, tuning
- Statistical inference problem
- Given ...
 - ... model output Qol $y \approx f(x; \lambda)$
 - ... observational data $\{x_i, y_i\}_{i=1}^N$
 - Find model parameters λ

- Posterior sampling via Markov chain Monte Carlo (MCMC)
- Given samples from posterior, one can interrogate it further
 - Estimate PDF with KDE
 - Compute moments
 - Build functional representation, such as PC
 - Pipe it to the next model as an uncertain input

Main target: model *structural* error

deviation from 'truth' or from a higher-fidelity model

- Inverse modeling context
 - Given experimental data, estimate the model error

 $y_i \approx f(x_i; \lambda)$

- Represent and estimate the error associated with
 - Simplifying assumptions, parameterizations
 - Mathematical formulation, theoretical framework
- ...will be useful for
 - Model validation
 - Model comparison
 - Scientific discovery and model improvement
 - Reliable computational predictions
- Ignoring model error leads to overconfident and biased predictions

Model Error – how to correct

Traditional approach: additive correction [Kennedy & O'Hagan, 2001] $y_i \approx f(x_i; \lambda) + \delta(x_i) + \epsilon_i$

- Difficult to distinguish contributions between model and data errors
- No longer guarantees physical constraints in g_i
- Unable to predict other Qols with model error
- Does not use a priori knowledge of discrepancy structure

Our approach: embedded model [S., Najm, Ghanem, 2015; S., Huan, Najm, 2018] $y_i \approx f(x_i; \lambda + \delta(x_i)) + \epsilon_i$

Embeds model error in specific submodel phenomenology

- Allows *targeted* placement of model error term (e.g., in locations where key modeling assumptions and approximations are made)
- Disambiguates model error from data noise
- Inherits model structure and physical constraints

Bayes Model Error

Forward/Inverse UQ workflow

- Preprocess: Surrogate construction, GSA, select embedding
- Calibration: Prior selection, MCMC
- Prediction: Forward PC propagation, possible extrapolation

Predictive uncertainty decomposition: Total Variance =

Parametric uncertainty + Data noise + Model error + Surrogate error

 All developments done within UQTk, lightweight C++/Python library out of SNL-CA (www.sandia.gov/uqtoolkit)

- Predictive variance decomposition with model-error component ٠
- Allows meaningful prediction of other Qols (e.g. no data/observable) ٠
- Allows (a more dangerous) extrapolation to other sites ۰

Literature

General PC

Ghanem, R., Spanos, P., "Stochastic Finite Elements: A Spectral Approach", Springer Verlag, (1991).

Xiu, D., Karniadakis, G., "The Wiener-Askey Polynomial Chaos for Stocahstic Differential Equations", SIAM J. Sci. Comp., 24(2), 619-644, (2002).

Le Maître, O., Knio, O., "Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics", Springer-Verlag, (2010).

Najm, H., "Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics", Ann. Rev. Fluid Mech., 41(1):35-52, (2009).

Xiu, D., "Numerical Methods for Stochastic Computations: A Spectral Method Approach", Princeton U. Press (2010).

Marzouk, Y., Najm, H., "Dimensionality Reduction and Polynomial Chaos Acceleration of Bayesian Inference in Inverse Problems", J. Comp. Phys., 228(6):1862-1902, (2009).

Bayesian compressive sensing

S. Ji, Y. Xue and L. Carin, "Bayesian Compressive Sensing", IEEE Trans. Signal Proc., 56(6), (2008).

K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto, P. Thornton, "Dimensionality reduction for complex models via Bayesian compressive sensing", *Int. J. Uncertainty Quantification*, 4(1), 63-93, (2014).

D. Ricciuto, K. Sargsyan, P. Thornton, "The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model", J of Advances in Modeling Earth Systems, 10(2), 297-319, (2018).

Model error

M. Kennedy and A. O'Hagan, "Bayesian calibration of computer models", *Journal of the Royal Statistical Society*, Series B. 63, 425-464, (2001).

K. Sargsyan, H. Najm, R. Ghanem, "On the Statistical Calibration of Physical Models", Int. J. Chem. Kinetics, 47(4), 246-276, (2015).

K. Sargsyan, X. Huan, H. Najm. "Embedded Model Error Representation for Bayesian Model Calibration", submitted to International Journal for Uncertainty Quantification. ArXiv version, arXiv:1801.06768, (2018).

Challenges and Opportunities

The curse of dimensionality

- Models have large number of parameters
- Models are expensive
- Always prebuild a surrogate and work with it
- There is room for a lot of 'compression', particularly in spatio-temporal outputs: Karhunen-Loève expansions (glorified PCA)
- Certainly go Bayesian: allows making sense of any amount of data/simulations and provides uncertainty estimate
- Can we really make sense of the model behavior with 2-3 simulations? well, getting there: multi-fidelity methods for UQ

Model structural errors

- Quantify how wrong the model is
- Just correcting the outputs not good enough embed stochastic terms in the model (or its surrogate)
- Model selection needs to be done over ensembles. Again, go Bayesian.

Optimal experimental design

 Optimization of Sensor Networks for Improving Climate Model Predictions (OSCM). Joint work with Youssef Marzouk (MIT). PI: Dan Ricciuto

Potential use cases

- Model fidelity hierarchy
- Prediction under scenario uncertainty
- Uncertain initialization based on observational data
- Model comparison with uncertainties

those that didn't make it

The Case for Uncertainty Quantification

UQ needed for...

- Model predictions
- Model validation and comparison
- Confidence assessment
- Reliability analysis
- Dimensionality reduction
- Optimal design
- Decision support
- (Noisy) data assimilation

Uncertainty Sources

- Model parameters
- Initial/boundary conditions
- Model geometry/structure
- Lack of knowledge
- Data noise
- Intrinsic stochasticity
- Numerical errors, too

Literature Challenges

PC Postprocessing: global sensitivity information is readily obtained from PCE

$$g(\xi_1,\ldots,\xi_d) = \sum_{k=0}^P c_k \Psi_k(\boldsymbol{\xi})$$

- Global sensitivity analysis \equiv Variance decomposition
- Total variance

$$Var[g(\boldsymbol{\xi})] = \sum_{k>0} c_k^2 ||\Psi_k||^2$$

Literature Challenges

PC Postprocessing: Main Effect and Joint Sensitivity Indices

• Main effect sensitivity indices

$$S_i = \frac{Var[\mathbb{E}(g(\boldsymbol{\xi}|\boldsymbol{\xi}_i)]}{Var[g(\boldsymbol{\xi})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 ||\Psi_k||^2}{\sum_{k>0} c_k^2 ||\Psi_k||^2}$$

- \mathbb{I}_i is the set of bases with only ξ_i involved
- S_i is the uncertainty contribution that is due to *i*-th parameter only
- Joint sensitivity indices

$$S_{ij} = \frac{Var[\mathbb{E}(g(\boldsymbol{\xi}|\xi_i,\xi_j)]]}{Var[g(\boldsymbol{\xi})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 ||\Psi_k||^2}{\sum_{k>0} c_k^2 ||\Psi_k||^2}$$

- I_{ij} is the set of bases with only ξ_i and ξ_j involved
- S_{ij} is the uncertainty contribution that is due to (i, j) parameter pair

Literature Challenges

PC Postprocessing: Total Effect Sensitivity Indices

Total effect sensitivity indices

$$T_{i} = 1 - \frac{Var[\mathbb{E}(g(\boldsymbol{\xi}|\boldsymbol{\xi}_{-i})]]}{Var[g(\boldsymbol{\xi})]} = \frac{\sum_{k \in \mathbb{I}_{i}^{T}} c_{k}^{2} ||\Psi_{k}||^{2}}{\sum_{k > 0} c_{k}^{2} ||\Psi_{k}||^{2}}$$

• The notation ξ_{-i} indicates terms that do not have ξ_i in them

- \mathbb{I}_i^T is the set of bases with ξ_i involved, including all its interactions
- The sum of all T_i is usually > 1

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

 $g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) +$

 $+ c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$

Variance contributions

$$\begin{split} Var(g) &= 0 + \ c_1^2 \langle \psi_1^2 \rangle \ + \ c_2^2 \langle \psi_1^2 \rangle \ + \ c_3^2 \langle \psi_1^2 \rangle \ + \\ &+ \ c_4^2 \langle \psi_2^2 \rangle \ + \ c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_7^2 \langle \psi_2^2 \rangle \ + \ c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_9^2 \langle \psi_2^2 \rangle \end{split}$$

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

$$g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$$

Variance contributions

$$\begin{aligned} Var(g) &= 0 + \frac{c_1^2 \langle \psi_1^2 \rangle}{c_1^2 \langle \psi_1^2 \rangle} + \frac{c_2^2 \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \\ &+ \frac{c_4^2 \langle \psi_2^2 \rangle}{c_1^2 \langle \psi_1^2 \rangle} + \frac{c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle \psi_1^2 \rangle} + \frac{c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle}{c_2^2 \langle$$

Main effect sensitivities $\xi_1 \quad \xi_2 \quad \xi_3$

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

 $g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_3\psi_$ $+ c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$

Variance contributions

 $Var(g) = 0 + c_1^2 \langle \psi_1^2 \rangle + c_2^2 \langle \psi_1^2 \rangle + c_3^2 \langle \psi_1^2 \rangle +$ $+ c_4^2 \langle \psi_2^2 \rangle + c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_7^2 \langle \psi_2^2 \rangle + c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_9^2 \langle \psi_2^2 \rangle$

Main effect sensitivities $\xi_1 \quad \xi_2$

$$\xi_2 = \xi_3$$

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

 $g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_3\psi_2(\xi_3) + c_3\psi_1(\xi_3) + c_3\psi_1(\xi_3) + c_3\psi_1(\xi_3) + c_3\psi_1(\xi_3) + c_3\psi_2(\xi_3) + c_3\psi_1(\xi_3) + c_3\psi_2(\xi_3) + c_3\psi_1(\xi_3) + c_3\psi_2(\xi_3) + c_3\psi_3) + c_3\psi_3(\xi_3) + c_3\psi_3) + c_3\psi_3(\xi_3) + c_3\psi_3) + c_3$

 $+ c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$

Variance contributions

 $Var(g) = 0 + c_1^2 \langle \psi_1^2 \rangle + c_2^2 \langle \psi_1^2 \rangle + c_3^2 \langle \psi_1^2 \rangle +$ $+ c_4^2 \langle \psi_2^2 \rangle + c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_7^2 \langle \psi_2^2 \rangle + c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_6^2 \langle \psi_2^2 \rangle$

Main effect sensitivities ξ_1 ξ_2 ξ_3

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

$$g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$$

Variance contributions

$$\begin{split} Var(g) &= 0 + \begin{array}{c} c_1^2 \langle \psi_1^2 \rangle + c_2^2 \langle \psi_1^2 \rangle + c_3^2 \langle \psi_1^2 \rangle + \\ &+ \begin{array}{c} c_4^2 \langle \psi_2^2 \rangle + c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_7^2 \langle \psi_2^2 \rangle + c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_3^2 \langle \psi_2^2 \rangle \end{split}$$

Total sensitivities $\xi_1 \quad \xi_2 \quad \xi_3$

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

$$g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$$

Variance contributions

$$\begin{aligned} Var(g) &= 0 + c_1^2 \langle \psi_1^2 \rangle + c_2^2 \langle \psi_1^2 \rangle + c_3^2 \langle \psi_1^2 \rangle + \\ &+ c_4^2 \langle \psi_2^2 \rangle + c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_7^2 \langle \psi_2^2 \rangle + c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_9^2 \langle \psi_2^2 \rangle \end{aligned}$$

Total sensitivities $\xi_1 \quad \xi_2 \quad \xi_3$

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

$$g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$$

Variance contributions

$$\begin{split} Var(g) &= 0 + \ c_1^2 \langle \psi_1^2 \rangle \ + \ c_2^2 \langle \psi_1^2 \rangle \ + \ c_3^2 \langle \psi_1^2 \rangle \ + \\ &+ \ c_4^2 \langle \psi_2^2 \rangle \ + \ c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_7^2 \langle \psi_2^2 \rangle \ + \ c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_9^2 \langle \psi_2^2 \rangle \end{split}$$

Total sensitivities ξ_1 ξ_2 ξ_3

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

$$g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$$

Variance contributions

$$\begin{split} Var(g) &= 0 + c_1^2 \langle \psi_1^2 \rangle + c_2^2 \langle \psi_1^2 \rangle + c_3^2 \langle \psi_1^2 \rangle + \\ &+ c_4^2 \langle \psi_2^2 \rangle + c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_7^2 \langle \psi_2^2 \rangle + c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_9^2 \langle \psi_2^2 \rangle \end{split}$$

Joint sensitivities (ξ_1, ξ_2) (ξ_1, ξ_3) (ξ_2, ξ_3)

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

$$g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) + c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$$

Variance contributions

$$\begin{split} Var(g) &= 0 + \ c_1^2 \langle \psi_1^2 \rangle \ + \ c_2^2 \langle \psi_1^2 \rangle \ + \ c_3^2 \langle \psi_1^2 \rangle \ + \\ &+ \ c_4^2 \langle \psi_2^2 \rangle \ + \ c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_7^2 \langle \psi_2^2 \rangle \ + \ c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle \ + \ c_9^2 \langle \psi_2^2 \rangle \end{split}$$

Joint sensitivities (ξ_1, ξ_2) (ξ_1, ξ_3) (ξ_2, ξ_3)

$$g(\boldsymbol{\xi}) = \sum_{k=0}^{P} c_k \Psi_k(\boldsymbol{\xi})$$

Consider dimensionality d = 3, total order p = 2, number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

 $g(\xi_1,\xi_2,\xi_3) = c_0 + c_1\psi_1(\xi_1) + c_2\psi_1(\xi_2) + c_3\psi_1(\xi_3) +$

 $+ c_4\psi_2(\xi_1) + c_5\psi_1(\xi_1)\psi_1(\xi_2) + c_6\psi_1(\xi_1)\psi_1(\xi_3) + c_7\psi_2(\xi_2) + c_8\psi_1(\xi_2)\psi_1(\xi_3) + c_9\psi_2(\xi_3)$

Variance contributions

$$\begin{split} Var(g) &= 0 + c_1^2 \langle \psi_1^2 \rangle + c_2^2 \langle \psi_1^2 \rangle + c_3^2 \langle \psi_1^2 \rangle + \\ &+ c_4^2 \langle \psi_2^2 \rangle + c_5^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_6^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_7^2 \langle \psi_2^2 \rangle + c_8^2 \langle \psi_1^2 \rangle \langle \psi_1^2 \rangle + c_9^2 \langle \psi_2^2 \rangle \end{split}$$

Joint sensitivities (ξ_1, ξ_2) (ξ_1, ξ_3) (ξ_2, ξ_3)

Main target: model *structural* error

deviation from 'truth' or from a higher-fidelity model

- Inverse modeling context
 - Given experimental or higher-fidelity model data, estimate the model error

Challenges

- Represent and estimate the error associated with
 - Simplifying assumptions, parameterizations
 - Mathematical formulation, theoretical framework
- ...will be useful for
 - Model validation
 - Model comparison
 - · Scientific discovery and model improvement
 - Reliable computational predictions

• Given noisy data, calibrate an exponential model: $g(x) \approx f(x; \lambda)$

Posterior on parameters

- Given noisy data, calibrate an exponential model: $g(x) \approx f(x; \lambda)$
- Employ Bayesian inference to obtain posterior PDFs on λ

Posterior on parameters

- Given noisy data, calibrate an exponential model: $g(x) \approx f(x; \lambda)$
- Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$

Posterior on parameters

- Given noisy data, calibrate an exponential model: $g(x) \approx f(x; \lambda)$
- Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$
- Higher data amount reduces posterior and predictive uncertainty
 - Increasingly sure about predictions based on the wrong model

Posterior on parameters

- Given noisy data, calibrate an exponential model: $g(x) \approx f(x; \lambda)$
- Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$
- Higher data amount reduces posterior and predictive uncertainty
 - Increasingly sure about predictions based on the wrong model

- Given noisy data, calibrate an exponential model: $g(x) \approx f(x; \lambda)$
- Employ Bayesian inference to obtain posterior PDFs on λ
- True model dashed-red is *structurally* different from fit model $f(x, \lambda)$
- Accounting for model error allows extra uncertainty component to propagate through predictions