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Reading Group Goals

DS/ML success of last decade
For our purposes Data Science = Machine Learning

Recognized challenges, particularly for physical systems

Growing body of literature on chemistry applications
Clear potential for significant impact

Forum for open discussion of existing work and potential new
directions

Foster collaboration [and future proposals?]

Bi-weekly talks. Pick a paper and volunteer!

Meant to be interactive
I am not an expert in today’s topic
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Machine Learning

Mitchell’1997 definition
[http://www.cs.cmu.edu/∼tom/mlbook.html]

Learning from experience for a given task.
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Machine Learning

[techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies]
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(Deep) Neural Networks

[http://www.deeplearningbook.org/]
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(Deep) Neural Networks

High degree of flexibility and great expressive power

Highly adaptive functional constructions in high-dimensions

Useful as general surrogates for complex forward models

As flexible parametrizations for phenomenological models

Huge success in many fields
Speech or image recognition
Transportation autonomy
Myriad uses in progress, e.g. oil exploration, climate modeling

NN flexibility and large data are crucial to established successes
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ML Challenges/Opportunities in DOE Applications

Physical considerations need to inform ML methods
Conservation laws, invariants, physical constraints
There is already some work in, e.g., chemistry, turbulence modeling

Account for uncertainties: point predictions not good enough

Overfitting and extrapolative errors much more dangerous
Need safeguards, such as Occam’s razor, (Bayesian) model
selection

Approximation theory largely missing

Quantification of predictive skill of ML systems under interpolation
and extrapolation

ksargsy@sandia.gov ML for PES Oct 23, 2018 8 / 32



Focus Paper
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Potential Energy Surface
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Potential Energy Surface
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Potential Energy Surface
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Main target: PES approximation

E = f (x)

x is coordinates/descriptors E is energy

Accurate and fast surrogates for PES to replace QM computations
for studies requiring many PES inquiries

saddle point search, transition paths, barrier heights
rapid assessment of reaction characteristics
automate the discovery of reactive pathways
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PES

Born-Oppenheimer apprx.: energy separation into electronic and
nuclear components

Ground state PE is completely defined by the atomic positions, the
nuclear charges, and the total charge of the system

Exact solution of Schrödinger eqn impossible for all but smallest
systems

Electronic structure calculations: balance between efficiency and
accuracy

Quantum mechanical computations
ab initio, density functional theory (DFT)

There is clearly well-defined, but expensive relationship between
atomic positions and potential energy

Simplified forms are needed
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Physical vs Mathematical PES Apprx’s

Simplified energy expressions based on physical considerations

Central idea: decompose into low-dim bonding of 2-,3-,4-body

Classical force fields, reactive potentials

(Embedded) atom method

Brenner potential, Tersoff potential, Stillinger-Weber potential,
Lennard-Jones potential

Accuracy limited by the imposed functional form
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Physical vs Mathematical PES Apprx’s
also called Machine Learning (ML); No direct physical meaning

Huge growth last decade
Weighted interpolation [Ischtwan 1994; Dowes, 2007-09; Maisuradze, 2009]

Permutationally invariant polynomials [Xie, 2010]

Gaussian processes [Bartok, Csanyi 2010-15; Mills, 2012; Rupp, 2013; Cui,
2016; Uteva, 2017; Guan, 2018; Schmitz, 2018]

Low-rank tensor expansions [Jackle, 1996; Baranov, 2015; Rai, 2017, 2018]

Support vector machines, kernel regression [Le, 2009; Balabin, 2011;
Dral, 2017]

Neural networks (NN) [Blank, 1995; Tai No, 1997; Prudente, 1998; Lorenz,
2004; Witkoskie, 2005; Manzhos, 2006-09; Malshe, 2008; Le, 2009] [Behler,
2010-16; Handley, 2010, 2014; Jiang, 2013; Li, 2013; Dolgirev, 2016; Khorshidi,
2016; Peterson, 2016; Carr, 2016; Kolb, 2016; Shao, 2016; Chmiela, 2017; Cubuk,
2017; McGibbon, 2017; Smith, 2017; Schutt, 2017; Yao, 2017; Hajinazar, 2017;
Bereau, 2018; Lubbers, 2018; Unke, 2018; Wang, 2018; Natarajan, 2018; Zhang,
2018; Onat, 2018]
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ML Potentials

Particularly useful when:
Many interaction types: covalent, ionic, metallic bonding, dispersion

Uncommon environments: amorphous systems, phase transitions

Making/breaking bonds

Requirements:
Accurate
Fast-to-evaluate
Analytic derivatives
Systematic improvement
Reactive, i.e. enable making/breaking bonds
High-dimensional
Transferable/generalizable to unseen atomic configurations
Translational, rotational, permutational invariance
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Main ingredients for supervised ML

Input
x ∈ R3N

Fingerprint
z ∈ RM

Fcn Form
fp(z) Fit Data

E

Cartesian Morse
Symm. Fcn

PIP
Zernike
Gaussian

Bispectrum

NN
GAP

Regression
Low-rank Tensor

SVM

minp ||E − fp(z)||
RMSE
MAE

Regularization
Force Field

ab initio
DFT

Training data (xi,Ei) for i = 1, . . . , S, and xi ∈ R3N

ab initio, DFT
Input representation, aka fingerprint, aka descriptor

(zi,Ei)

Parameterized functional form of the approximation class

fp(z)

Loss function
min

p

S∑

i=1

(Ei − fp(zi(x)))2
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Representation

Internal coordinates,
xi → zi ≡(bond length, bond angle, and dihedral angle).
Dimensionality 3N → 3N − 6

Morse variables, [Qu,Yu, Bowman, ARPC, 2018]:
N(N − 1)/2 variables, from internuclear distances zjk = e−||xj−xk||/γ

Invariant low-order polynomials [Xie, 2010]. Think of x2
i yi → x2

i yi + xiy2
i

Bispectrum [Bartok, 2010]

Symmetry functions [Behler and Parrinello, 2007; Behler, 2011]

Details coming
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Functional Forms

Sparse Regression f (x) =
∑K

k=0 ckΨk(x)

Polynomial basis
Radial basis functions

Low-Rank Tensor Expansion f (x) =
∑R

r=1 cr
∏d

j=1 Ψrj(xj)

Canonical format
Tensor-train format

Gaussian processes P(f |D)

Hierarchical correction
Flexible kernels

Neural Networks f (x) = ...W3σ(W2σ(W1x + b1) + b2) + b3

Multilayer Feed-Forward NN
Convolutional NN
Recurrent NN
...
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(Feed Forward) Neural Network
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NN is a highly parameterized functional form

Linear function y = wx + b

Many of those y = W1x + b1

Apply nonlinear activation function σ(W1x + b1)

Repeat σ(W2σ(W1x + b1) + b2)

Another layer: σ(W3σ(W2σ(W1x + b1) + b2) + b3)

I told you so: a parameterized function

E = fp(x)

with p = (W1, . . . ,WL, b1, . . . , bL)

Number of parameters: L(N + 1)N

x
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W [1], b[1] W [2], b[2]

a[0] z[1], a[1], σ[1] z[2], a[2], σ[2] z[L−1], a[L−1], σ[L−1]

W [L], b[L]

z[L], a[L], σ[L]

ŷ(i) ←→ y(i)
. . .

Input layer
Hidden
layer [1]

Hidden
layer [2]

Hidden
layer [L-1]

Output
layer
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Neural network potentials

Pros
High accuracy
Much cheaper than electronic structure calculations
Black-box: no-knowledge of the functional form of PES
No system-specific modifications required
Forces often computable by chain rule

Cons
Slower than parameterized, classical force fields
Extrapolation questionable
Overfitting happens
Default implementation does not allow incremental addition of
atoms
Training difficult
Low-to-moderate dimensions
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High-dimensional NN for PES [Behler-Perrinello, 2011]

Map Cartesian coordinates to symmetry descriptors
Write the total energy as a sum over all atoms ES =

∑N
i=1 Ei

Separate NN architecture for each atom
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Symmetry Functions

Transformed coordinates, which are many-body functions of all
atomic positions inside cutoff spheres
Called symmetry functions for historic reasons
Structurally equivalent representations of the system must give
rise to the same set of coordinates
Basic requirements:

rotational and translational invariance
invariance with respect to the permutation of atoms of the same
element
provide a unique description of the atomic positions
constant number of function values independent of the number of
atoms in the cutoff spheres
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Symmetry Functions

Cutoff functions

fc,1(Rij) =

{
0.5
(

cos
(
πRij
Rc

)
+ 1
)

for Rij ≤ Rc

0.0 otherwise

fc,2(Rij) =

{
tanh3

(
1− Rij

Rc

)
for Rij ≤ Rc

0.0 otherwise

Sym. fcns depend on the positions of all atoms inside the cutoff
spheres. Therefore, in contrast to internal coordinates like bond
lengths, their numerical values are not always easy to illustrate.
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Symmetry Functions - Practical Recipes

Build up for each atom
G1

i =
∑Natom

j=1 fc(Rij)

G2
i =

∑Natom
j=1 e−η(Rij−Rs)

2
fc(Rij)

Add angular dependence
G3

i = 21−ζ∑
k 6=i,j

[
(1 + λ cos θijk)

ζe−η(R2
ij+R2

ik+R2
jk)fc(Rij)fc(Rik)fc(Rjk)

]

G4
i = same but without Rjk

Many ‘free’ parameters : Rc, η, Rs, ζ, λ
Transferability is a challenge

Weights are optimized for a fixed set of symmetry functions, and for
a specific system
Consider symmetry functions as part of the NN

Adaptive construction of symmetry functions
Quite empirical: check the range of values, de-correlate, check the
forces, parsimony
Huge room for improvement
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Preconditioning

Scale the inputs to NN, i.e. symmetry fcn outputs

Choice of initial NN weights

Output scaling
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Symmetry Functions and Forces

Force is the negative derivative w.r.t Cartesian coordinate

Fx = −∂E
∂x

= −
Natom∑

j=1

∂Ej

∂x
= −

Natom∑

j=1

Ns,j∑

µ=1

∂Ej

∂Gjµ

∂Gjµ

∂x

Force acting on an atom depends on the positions of the atoms
being as far as 2Rc away

Forces also useful for training and validation
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Loss Function and Training NNs: challenges

Training is an optimization problem to minimize the loss function

min
p

J(p) = min
p

S∑

i=1

(Ei − fp(xi))
2

... in this case, xi are the outputs of symmetry functions, and p = (W, b)
are the NN parameters to tune. Training samples: (xi,Ei)

Actually, you want to minimize ||E(x)− fp(x)||,
but have to work with a finite sample estimate of it

Training done via stochastic
gradient descent and backpropagation

Training error vs testing error:
extrapolation challenge

Generalization error, well-known
challenge in NN: use regularization
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Training challenges and regularization

Check inputs to ensure training inputs
(i.e. symmetry fcn outputs)
are within a range of validity

Incremental increase of training set

Regularization
Parameter norm penalties

Inclusion of forces in the loss function

Early stopping

Multiple-fit validation

Ensemble methods

Dropout
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Software
ænet The Atomic Energy Network; Artrith et. al
http://ann.atomistic.net/; Fortran/C/(some) Python;
Neural Network

MLatom A Package for Atomistic Simulations with Machine Learning; Dral et. al
http://mlatom.com/; Pre-compiled binaries on Linux;
Kernel Ridge Regression

Amp Atomistic Machine-learning Package; Andrew Peterson and Alireza Khorshidi
https://amp.readthedocs.io/; Python, some Fortran, ASE;
Neural Network

MLIP Machine Learning of Interatomic Potentials; Shapeev et. al
http://gitlab.skoltech.ru/shapeev/mlip/; C++, LAMMPS integration;
Moment tensor potential (MTP), active learning

MSA Monomial Symmetrization for PES Fitting; Bowman et. al
https://scholarblogs.emory.edu/bowman/msa/; Fortran/C++/Python;
Permutationally invariant polynomials

DeePMD-kit Deep learning package for many-body PE and MD; Wang and E
https://github.com/deepmodeling/deepmd-kit; Python/C++/Tensorflow;
Neural Network

GAP Gaussian Approximation Potentials; Csanyi and Bartok
http://www.libatoms.org/; Fortran;
Gaussian processes
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Summary

Mathematical PES clearly gaining momentum and work well
Any PES-intensive study, e.g. reaction pathway search

Major decisions and opportunities
Training data selection

Need to include a large range of structures
Adaptive addition possible

Input representation
Selection of invariance-constraining representations
Automated model selection for optimal symmetry function choice

NN architecture selection
Plain feed-forward NN so far

Loss function selection
Inclusion of forces
Regularization penalties; soft and hard constraints
Goal-oriented

Training/validation procedure
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