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Outline

@ Langmuir probe data and initial UQ goal
@ Fitting parametric model to data
@ Bayesian viewpoint

o Noise assumptions

@ Markov chain Monte Carlo
@ Model selection

@ Some results

e Basis choice, zero-derivative constraint
@ Error-in-variable models
e Moment-matching likelihood

@ Summary and work-in-progress
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PISCES-A He(+1) Plasma Profiles Measured By
Reciprocating Langmuir Probe

Probe data consists of 5 probe shots (or plunges)

Each point is a measurement (no averaging)

Horizontal error bars: uncertainty in position during plunge
Vertical error bars: fitting uncertainty
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Build uncertain representation (a.k.a. joint PDF) of the fit
to feed forward model (GITR, Xolotl)
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Fitting parametric model to data: least squares
@ Givendata (z;,y;) fori=1,...,N °
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Fitting parametric model to data: least squares

@ Givendata (z;,y;) fori=1,...,N 0 S
@ Given parametrized model form f.(z) oo
@ Tune ¢, such that y; = f.(x;)
@ Least-squares

Order 4

lon flux, 1022m~2s71

N 0.1 " .
argmin Z(yl - fc(xl))Q ’ : l(I)ladius %? mm]20 ®
¢ =1 '
K
@ Linear parametrization (basis expansion)...  fe(z) = Y ¢z ()
k=0

o ... allows analytical answer ¢ = (PT P)~1 Py, where Py, = Wy, (x;)
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Fitting parametric model to data: least squares

0.

@ Givendata (z;,y;) fori=1,...,N - Data,

—— Model, fc(x;)

o
o

@ Given parametrized model form f.(z)
@ Tune ¢, such that y; = f.(x;)
@ Least-squares

lon flux, 1022m~2s~1

N 0.1 ..
argmin Z(yl - fc(xl))z ’ ® 1?ladius %rs mm]20 ®
¢ =1
K
@ Linear parametrization (basis expansion)...  fe(z) = Y ¢z ()
k=0

o ... allows analytical answer ¢ = (PT P)~1 Py, where Py, = Wy, (x;)

@ ... with covariance information ¥, « (P P)~!
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Bayesian viewpoint of fitting v = fo(z;)
@ Bayes’ formula p(M|D) = p(DIM)p(M)

p(D)
@ DataD = {xi, yl}fil
@ Model M =¢ Likelihood ~ Prior
. , Posterior — =
@ Rewrite Bayes’ formula ~—= pyle) ple)
plcly) =
p(y)
~~
Evidence
@ Prior p(c): expert knowledge, or uninformative

@ Posterior  p(c|y): updated ‘knowledge’ of ¢, given data y

@ Likelihood L(c) = p(y|c): key, noise/error model, encapsulates
assumptions about data collection

@ Evidence p(y): notimportant for parameter (coeff. ¢) estimation;
crucial for model selection (e.g. poly order)
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Bayesian least squares = Gaussian noise assumption

@ Gaussian likelihood:

T (v = felo))?
R |

@ Data noise size o either given by data expert, or inferred with ¢ as a
hyperparameter

@ For linear models: f.(z) = Zi{:o cx Vi (), we have analytically
available Gaussian posterior,
with mean p. = (PTP)~'PTy and &, = o?(PTP)~1,
exactly as in deterministic least-squares

@ This simple formulation highlights importance of noise assumption:

Least-squares assumes Gaussian i.i.d. noise with constant st. dev.
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Posterior sampling via
Markov chain Monte Carlo (MCMC)

Likelihood Prior

Posterior Py

) = plyle) (o)
p(y)
~~
Evidence

@ In general, when model is not linear or noise is not Gaussian, there
is little alternative to MCMC

@ MCMC is a search procedure in parameter space leading to a
stochastic process with a stationary distribution p(c|y)

@ Given samples from posterior, one can interrogate it further

Estimate PDF with KDE

o Compute moments

e Build functional representation, such as PC

e Pipe it to the next model as an input
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Model selection via Bayes Factor

Likelihood Prior
Posterior

—~
p@@::p@@@>“@
—~—~—
Evidence

@ MCMC only requires posterior evaluation up to proportionality

constant, p(cly) o p(y|c)p(c)
@ Evidence p(y) is not important for parameter estimation

@ Evidence is marginal likelihood (i.e. likelihood integrated w.r.t. prior)

M) = [ plalelpte)de

p(y

@ ltis crucial for model selection via Bayes factors

BF (M, Ms) =
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Poly order as alternative models: BF(Mp, M,) = (M)

p(y|M,)
@ Evidence p(y| M) for K-th order model f.(x Z R e

@ Encapsulates Occam’s razor or the “law of parS|mony
log(Evidence) = log(Fit) - log(Complexity)
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@ Caveat: evidence is often difficult to compute
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Back to Langmuir probe data
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Three paths:

@ Ignore correlations for now and fit individual Qols independently
e Done. See next few slides.
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e Done. See next few slides.

@ Get the raw measurements behind this data, use (hierarchical)
Bayesian inference with raw data

e Formulation nearly ready. Some questions remain.
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Back to Langmuir probe data
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Three paths:

Ignore correlations for now and fit individual Qols independently
e Done. See next few slides.

Get the raw measurements behind this data, use (hierarchical)
Bayesian inference with raw data

e Formulation nearly ready. Some questions remain.

In case raw data is not available, employ maximum-entropy
methods to propose hypothetical underlying data sets
o Not needed yet.
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Independent modeling of fitted data

A few improvements first: recall the model f.(z) = 32X ¢, ¥p(2)

@ Basis choice: use Legendre 0
polynomials (orthogonal on [—1, 1])
instead of monomials (1, z, z2, 23, ...) E i
\Ifo(.r) =1 NEO
U(z) == zo2
Uy(z) = (322 —1)/2
U3(z) = (53 — 32)/2 00— O T

0 1
Radius [r, mm]

*orthogonality makes coeff. inference better conditioned

@ Scale input from r € [0,29] to « € [—1, 1], essentially arriving at
scaled Legendre polynomials Ly (r) = W (z)

@ Zero-derivative on one end: the highest-order coefficient is
completely determined by the lower-order ones

@ Positivity constraint: work with logarithms (not impl. yet)
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Error-in-variable model [perhaps outdated]

@ True Z; is ‘hidden’ behind observed z;
@ &; is uniform, n; is normal

lon flux, 102m~2s~1

T; = T; + O-gjgiv
Yi = fe(Z:) + U;ym-

o 5 20 25

Radius [r, mm]
@ Option 1: infer ¢ only
e Need uncertainty propagation for likelihood construction
e Use Polynomial Chaos (story for another day)
@ Option 2: infer cand z

e Pseudo-marginal MCMC .
=P

(
(
p(c, Z|D) o = ply
(
(

X
o plely, @)p
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Error-in-variable model [perhaps outdated]

Order 2

Order 3

Order 4

lon flux, 1022m=2s~1
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But our assumptions were wrong (see next slide)!
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Modeling noise is critical

@ Turns out the vertical errorbars are not data noise, but are a result
of a fitting process

@ We need to produce polynomial models that are representative of
given vertical errorbars

@ Horizontal errorbars are not ‘measurement’ errors either!

In lieu of raw data, need to be careful about
the errorbars and noise assumptions
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Moment/PDF matching noise model

@ Lift the model from deterministic to stochastic

fc(a:) = ¢p+ 01\111(1') =+ CQ\IJQ(.I') + 03\1’3(3?) +
+ [do + dl\Ifl(:L') + dg\Ifg(x) + d3\p3($)] &

@ Zero-derivative constraint cs = l(co, c1, ¢2),d3 = I(do, d1, d2)

@ Object of inference ¢ = (cy, 1, c2, do, di, d2)

@ Match moments, or better,
Kullback-Leibler divergence between model and data

K 2 2
. o o] + — 1

L(p1||p2) = /log ( ) dp1 Gagss log 92 4 1 (:ul2 MQ) 1
D2 o1 205 2

@ Use approximate likelihood log L(c) = —K L(py||ps) — K L(pf||py)
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Moment/PDF matching noise model
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@ Match moments, or better,
Kullback-Leibler divergence between model and data

K 2 2
. o o] + — 1

L(p1||p2) = /log ( ) dp1 Gagss log 92 4 1 (:ul2 MQ) 1
P2 o1 205 2

@ Use approximate likelihood log L(c) = —K L(py||ps) — K L(p¢||py)

K. Sargsyan (ksargsy@sandia.gov) UQ update May 23, 2018 15/20



Moment/PDF matching noise model
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@ Match moments, or better,
Kullback-Leibler divergence between model and data

2 2
- 1
KL(p1||ps) = /10g (p ) iy G Z Lo m)? 1

2(7% 2

@ Use approximate likelihood log L(c) = —K L(py||ps) — K L(p¢||py)
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Moment/PDF matching noise model:
joint samples on poly. coeffs

PDF of ¢o
VAN R, Recall the model:
P [\t [co + dog] + [e1 + di&] Ui (2) + ...
// ““‘ 1 ~ ~
/ A PDF of ¢, o a
hr where ¢ is standard normal,
© /\ and ¢;’'s and d;’s are
oo PDF of & represented by posterior
‘ /' |» samples via MCMC
& ) [
/) \
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The best option is to use the raw data

@ All good, but we had to make a few assumptions/approximations
@ Uncertainties in the process of producing fitted data are ignored
@ As a consequence, correlations are not accounted for

@ An extreme example - density is perfectly correlated with flux and
temperature!

Iz’s

VTe

Ne X

@ Using raw data would allow to put the measurement error
assumptions where they belong, at the ‘lowest’ level

* Without raw data, we could employ maxEnt arguments to ‘propose’
datasets consistent with the fitted data, and treat it with a
multi-stage Bayesian method [Najm et. al., 1JUQ, 2014]
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Formulate inference bottom-up, using raw data
(work-in-progress)

The underlying data is for current/voltage as probe moves, followed by
the |-V exponential fit to extract I;; and T,, and computing
(deterministically!) density n. o< I;s/v/Te.
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Formulate inference bottom-up, using raw data
(work-in-progress)

The underlying data is for current/voltage as probe moves, followed by
the |-V exponential fit to extract I;; and T,, and computing
(deterministically!) density n. o< I;s/v/Te.
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[Francis Chen, Mini-Course on Plasma Diagnostics, IEEE-ICOPS meeting, June 5, 2003]
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Summary

@ General Bayesian machinery for fitting models to data
e Flexibility to incorporate noise/error assumptions
o Besides parameter estimation, it provides model selection machinery
@ PISCES-A Langmuir Probe Data: three options:
o [Done] Independent fitting with processed data
e [In progress] Fit with raw data, retains correlations and builds on
lower-level noise assumptions
o [Not needed yet] Data space exploration using MaxEnt principle if
raw data unavailable

@ Any of above mechanisms provide posterior samples of fit
parameters (polynomial coefficients)
o Add to the list of uncertain inputs for GITR/Xolotl
e Perhaps represent them with Polynomial Chaos (PC) expansions
e Forward propagation of uncertainties with PC
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