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The Case for Uncertainty Quantification

UQ needed for... Uncertainty Sources

@ Model predictions @ Model parameters

@ Model validation and comparison

Initial/boundary conditions

@ Confidence assessment

Model geometry/structure

Reliability analysis
@ Lack of knowledge
@ Dimensionality reduction

Data noise

Optimal design

Intrinsic stochasticity

Decision support

@ (Noisy) data assimilation Numerical errors, too
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Forward UQ
@ Local sensitivity analysis and error propagation
df
Ay = -
4 dz 0

This is ok for:

e small uncertainty
o low degree of non-linearity

Ax

@ Non-probabilistic methods

0.5

e Evidence theory
o Fuzzy logic

e Interval math

@ Misses correlations .

@ Probabilistic methods — our focus
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Polynomial Chaos — functional representation for RVs

@ First introduced by Wiener, 1938
. U~ > upte(€)
@ Revitalized by Ghanem and Spanos, 1991 Pt
@ Convergent series if U has finite variance
@ Selection of order p is a modeling choice
@ Describes a r.v. U with a vector of PC modes (ug, u1, . .., up)

@ Standard r.v. &, standard orthogonal polynomials (&), i.e.

[ i(€) (&)me(£)dE = bijwi] 2

[[ PC Type | Domain [[ Density ¢ (£) | Polynomial | Free parameters ||
2
Gauss-Hermite (—o0, +00) ie*% Hermite none
Legendre-Uniform | [—1 ] % Legendre none
Gamma-Laguerre | [0, +oco lﬁ(%_;f) Laguerre | a> —1
-1

] (A+6>(1-6)7

Beta-Jacobi 20+BF1 Blat LLBL1)

Jacobi a>-—1,> -1

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]
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Construction of 1D PC

@ Orthogonal projection:

@ Need to compute integral
@ Needamap U « &

PC High-D

U~ Zzzoukwk (5)

e = Hwill2<U¢k>
(U) = [U(?) me(£)d§

@ If lucky, there is an explicit formula, e.g. lognormal U = e¢

1.
‘ — Exact Lognormal ‘

0.

0. N

/ HG PC Order 1
0.
0.2 N\ \
L
0 \\
’ 0 1 2 3 4 5 6
K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018 5]



Intro  ForwardUQ InverseUQ Summary

Construction of 1D PC

@ Orthogonal projection:

@ Need to compute integral
@ Needamap U « &

Uk =
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PC High-D
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1.

|

‘ — Exact Lognormal‘

0.
0. \ \
HG PC Order 3
0.4
" \\
0 \‘
' 2 3 4 5 6
K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018 5]



Intro  ForwardUQ InverseUQ Summary PC High-D

Construction of 1D PC U~ 0 qupthe(€)
@ Orthogonal projection: up, = HwiIIQ <U¢k)
@ Need to compute integral (Uir) = [U(?) me(€)dg

@ Needamap U « &
@ If lucky, there is an explicit formula, e.g. lognormal U = e¢
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Construction of 1D PC U~ 0 qupthe(€)
@ Orthogonal projection: up, = HwiIIQ <U¢k)
@ Need to compute integral (Uir) = [U(?) me(€)dg

@ Needamap U « &

@ CDF transform helps:
o U= Fljl(f%l) if £ is Uniform, Legendre-Uniform PC
o U = F; (®(¢)) if ¢ is Normal, Gauss-Hermite PC

where Fy;(-) is the Cumulative Distribution Function (CDF) of U.
[and @(-) is CDF for standard normal]
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Essential use of PC in UQ U~ S8 upUs(€)
Strategy:
@ Represent model parameters/solution as random variables
@ Construct PC for uncertain parameters
@ Evaluate PC for model outputs

Advantages:
@ Computational efficiency
@ Utility
o Moments: E[u] = ug, V[u] = Sk u2[|U.]%, ...

Global Sensitivities — fractional variances, Sobol’ indices
Uncertainty propagation
Surrogate for forward model

Requirements:
@ Finite variances (not a handicap in practice)
@ Smooth forward functions
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PC features: uncertainty propagation

K K
U~ up0,(8) Z=fU)~> cxTi(é)
k=0 k=0

@ Basic task: given PC for inputs, find PC for outputs.
@ Input-output map can also be defined implicitly, via governing
equations G(Z,U) = 0.

@ Two approaches

e Intrusive: project governing equations
@ Results in set of equations for the PC modes
@ Requires redesign of computer code
@ PCEs for all uncertain variables in system

e Non-intrusive: project outputs of interest
@ Sampling to evaluate projection operator
@ Can use existing code as black box
@ Only computes PCEs for quantities of interest
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PC surrogate construction
@ Build/presume PC for input parameter U

K
UE) = upWi(€)
k=0

with respect to multivariate standard polynomials.
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PC surrogate construction
@ Build/presume PC for input parameter U

K
UE) = upWi(€)
k=0

with respect to multivariate standard polynomials.

@ Input parameters are represented via their cumulative distribution function
(CDF) F(-), such that, with &; ~ Uniform[—1, 1]

i+ 1 .
U= Fy! <£;> fori=1,2,...,d.
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PC surrogate construction
@ Build/presume PC for input parameter U

K
UE) = upWi(€)
k=0

with respect to multivariate standard polynomials.
@ If input parameters are uniform U; ~ Uniform[a;, b;], then

ai—|—bi bi—ai
+

U =
2 2

&i-
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PC surrogate construction
@ Build/presume PC for input parameter U

K
UE) = upWi(€)
k=0

with respect to multivariate standard polynomials.

@ Forward function f(-), output Z
K
Z = f(U(¢)) 7= V()
k=0

@ Global sensitivity information for free
- Sobol indices, variance-based decomposition.
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Alternative methods to obtain PC coefficients

K
Z=fU&)~fs(&) =) cr¥r(§)
k=0
@ Projection
o = W = argmnin||(€) — (€)1

e Integral via Monte-Carlo : slow convergence
e Integral via quadrature : forced to have model evaluations at specific
locations; does not scale well to high-d

@ Regression
e = (PTP)"PTf = argmin | (§) ~ £:(€)lle

Py, = V(&) and f = (f(&1),---, f(&n))

o Allows regularization
o Allows Bayesian extension
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Bayesian inference of PC surrogate: high-d, low-data regime
Z = f(€) = Yok Tu(é) 4

V(61,8255 8a) = Vi, (§1) U, (€2) - - Yy (Ea) T
e Issues:
, how to properly choose T
the basis set? A

Dim 1

e need to work in underdetermined regime N < K:
fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community
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Bayesian inference of PC surrogate: high-d, low-data regime
Z = f(€) = Yok Tu(é) ;
\Ilk(£17£27 o) gd) = ’(/}kl (gl)wlw (62) e wk?d (Ed)

e Issues:

Dim 2
© 4 N w s o o N @ ©
©cr® ¢ © ©¢ © © © © o0 o o
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@ © © © © © o o
3 4 5 6 7 8 9 10
Dim 1

“re © © o0 o

e
e o o
°
2
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e get help from the machine learning community
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Bayesian inference of PC surrogate: high-d, low-data regime
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In a different language....

e N training data points (&;, Z;) and K + 1 basis terms ¥ (-)

o ‘Measurement’ matrix PV *E+D with Py, = W, (¢,)

e Find regression weights ¢ = (cy, ..., ck) so that

Z; = ZkK:OCk\I’k(ﬁi)

Z = Pc or

e The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K + 1 = (p + d)!/(pld!) terms.

e For limited data and large basis set (IV < K) this is a sparse signal
recovery problem = need some regularization/constraints.

e Least-squares argming {||Z — Pc||3}
e The ‘sparsest’ argming {||Z — Pcl3 + oflc||o}
e Compressive sensing argming {||Z — Pc||3 + o||c||1 }
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Compressive sensing and regularization
@ Least-squares argming || Z — Pc|3

@ Tikhonov regularization; Ridge regression

argmin [|Z — Pc|l3 +1lell3
@ The ‘sparsest’ argming {||Z — Pc||3 + a|c||o}
@ Compressive sensing, LASSO, basis pursuit

argmin {12 — Pelf3 + allcl|.}

@ .. orargming||Z — Pcl|la st |lc]li <e€
@ ... or argming ||c||; st ||Z — Pcllz < ¢

= discovery of sparse signals \\Pf/\ N

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018 12
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Compressive sensing: enhancements

Likelihood Prior

—_——N—
@ Bayesian extension: argmin.{||Z — Pc||2 + a||c||1}
o Get coefficients with uncertainties
e Fights overfitting better
e Connections with relevance vector machine (RVM)

@ Weighted regularization
o Always better, if you know how to weigh

@ lterative growth of polynomial basis
e Exploit the structure of polynomial bases for smarter search
e An iterative procedure that allows increasing the order for the
relevant basis terms while maintaining the dimensionality reduction
[Sargsyan et al. 2014], [Jakeman et al. 2015].
e lterations inform the weighting procedure
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BCS removes unnecessary basis terms

Initial Basis

TS
ool i

PC

High-D

/

—

N

}

Weighted
BCS

Iterations

/
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BCS removes unnecessary basis terms

Order (dim 1)
© 00 ~ (=2} (%] B (%] N

-
o

f(x,y) = cos(z + 4y) f(x,y) = cos(z” + 4y)

Order (dim 2)

90 1 2 3 4 5 6 7 8 9 10
-2
-4
-6
-8
-10
12
14
-16
18

Order (dim 2)

0 1 2 3 4 5 6 7 8 9 10
-2
-4
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BCS recovers true PC coefficients with increased

number of measurements
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BCS recovers true PC coefficients with increased

number of measurements

PC High-D
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BCS recovers true PC coefficients with increased
number of measurements

Coef magnitude, |c, |
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PC High-D
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Basis set growth: simple anisotropic function

Dim 2
Wb

®
® O
T2

(@]
o ® @ @

3 4 5 6 7
Dim 1
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Basis set growth: ... added outlier term

Dim 2
Wb

oJ® O @

(]

O-@

T2
Dim 1
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3
Application of Interest: EBSM Land Model CE/SM

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities
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(E3sM

Energy Exascale
Earth System Model

@ A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
@ Involves ~ 70 input parameters; some dependent
@ Non-smooth input-output relationship
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Sparse PC surrogate and uncertainty decomposition
for the E3SM Land Model

@ Main effect sensitivities : rank input parameters
@ Joint sensitivities : most influential input couplings
@ About 200 polynomial basis terms in the 50-dimensional space
@ Sparse PC will further be used for
sampling in a reduced space
parameter calibration against experimental data

. rootb_par - finr [} foot !eaf - crit_d.
slatop frootcn . crit” onset t_gdd

Total Sensitivity for LH
8 & 3 3 & b 3§
-

SEENNE DN

eI & ]

o EEEmE—

B s

& ]

EEssmmmmnmmm——— =R
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Sparse PC surrogate and uncertainty decomposition
for the E3SM Land Model

@ Main effect sensitivities : rank input parameters

@ Joint sensitivities : most influential input couplings

@ About 200 polynomial basis terms in the 50-dimensional space
@ Sparse PC will further be used for

sampling in a reduced space
parameter calibration against experimental data

Site # 51 Site # 51
GPP TOTVEGC
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Inverse UQ — Estimation of Uncertain Parameters

@ Require joint PDF on input space
@ Statistical inference — an inverse problem

@ Given Constraints: PDF on uncertain inputs can be estimated using
the Maximum Entropy principle

— MaxEnt Methods

@ Given Data: PDF on uncertain inputs can be estimated using Bayes
formula

— Bayesian Inference

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018 22



Intro  ForwardUQ InverseUQ Summary Bayes Model Error

Bayes formula for Parameter Inference

@ Collected data: HETRT) A
@ Data model: yi = flxis A) + €
° BayeS fOfmUla: Likelihood  Prior
pylA)  p(A
p(Aly) _ u
Posterior
p(y)
Evidence

Prior: knowledge of A prior to data

Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018
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The Prior

@ Prior p(\) comes from Likelihood  Prior
e Physical constraints A A
e Prior data/knowledge p(Aly) _ PN p(Y)

@ Types of uninformative priors Posterior (@)

e Improper prior
Objective prior
Maxent prior
Reference prior
Jeffreys prior

@ It can be chosen to impose regularization

@ Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters

@ The choice of prior can be crucial if data is not informative

@ When there is sufficient information in the data, the data can
overrule the prior

Evidence

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018 24
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Construction of the Likelihood p(y|))

Likelihood ™ Prior

@ Requires a presumed error model p(Ay) p(yIA) p(A)
@ Data model: Yi = f(xz, )\) + € Posterior

p(y)
@ Model this error as a random variable, e.g. Evidence

@ Error is due to instrument measurement noise
e Instrument has Gaussian errors, with no bias
e Measurements are independent
e~ N(0,0%)
@ For any given A, this implies
Yil\, 0 ~ N(f(zi; ), 0%)

\/%J exp (_ (yi — J;g’gi; )\))2)

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018 25
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Exploring the Posterior

@ Given any sample ), the un-normalized posterior probability can be
easily computed

Posterior Likelihood  Prior

p(Aly) < p(ylA) p(\)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)

— Metropolis-Hastings algorithm:
e Random walk with proposal PDF & rejection rules

— Computationally intensive, O(10°) samples
— Each sample: evaluation of the forward model

e Surrogate models [Marzouk et. al, 2009]

@ Evaluate moments/marginals from the MCMC statistics
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Forward and Inverse UQ in a workflow
Model Surrogate Data

[ ] Forward UQ @ Prediction p(h(\)|D)

C] Inverse UQ Any model

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018
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o Introduction

o Forward UQ
@ Polynomial Chaos
@ High Dimensional PC Surrogate Construction

@ 'nverse UQ
@ Bayesian Inference

@ Account for Model Error in Bayesian Inference

o Summary




Intro ForwardUQ InverseUQ Summary Bayes Model Error

Main target: model error g(x) =~

deviation from ‘truth’ or from a higher-fidelity model
e ... otherwise called (with slightly altered meanings):
model discrepancy, model structural error,
model inadequacy, model misspecification,
model form error, model uncertainty

e Inverse modeling context
Given experimental or higher-fidelity model data,
estimate the model error

e Represent and estimate the error associated with
Simplifying assumptions, parameterizations
Mathematical formulation, theoretical framework

e ...will be useful for
Model validation
Model comparison
Scientific discovery and model improvement

Reliable computational predictions
K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018
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Ilgnoring model error leads to
overconfident and biased predictions

e o Data,N=5
1.
0.
> 0
—-0.
-1.
-1.
=1.0 -0.5 0.0 0.5 1.0

X

Model-data fit

@ Given noisy data, calibrate an exponential model:  g(z) ~ f(x; \)
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Ilgnoring model error leads to
overconfident and biased predictions

1 1
e e Data, N=5
1.0| — Predictive mean
Predictive stdev 17
1.6
1.5
1.4
_l:l.O -0.5 0.0 0.5 1.0 L .5 0.6 0.7 (3\.8 09 1.0 11
X 1
Model-data fit Posterior on parameters

@ Given noisy data, calibrate an exponential model:  g(z) ~ f(x; \)
@ Employ Bayesian inference to obtain posterior PDFs on A
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Ilgnoring model error leads to
overconfident and biased predictions

1.
e e Data, N=5
1.0| — Predictive mean
[ Predictive stdev L7
0.5 == True function
1.6
> 0 <
1.5
—-0.
EET DR et 1.4
_14‘1.0 -0.5 0.0 0.5 1.0 ¢ 0% o7 OA.S 09 1.0 1.1
X 1
Model-data fit Posterior on parameters

@ Given noisy data, calibrate an exponential model:  g(z) ~ f(x; \)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(z, \)
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Ilgnoring model error leads to
overconfident and biased predictions

1. 1.
e e Data,N=20
1.0| — Predictive mean v
B Predictive stdev =y L1
0.5 -~ True function
/ 1.4

0.5 1.0 05 06 07 08 09 10 11

Model-data fit Posterior on parameters

@ Given noisy data, calibrate an exponential model:  g(z) ~ f(x; A)
@ Employ Bayesian inference to obtain posterior PDFs on A
@ True model — dashed-red — is structurally different from fit model f(z, A)
@ Higher data amount reduces posterior and predictive uncertainty
e Increasingly sure about predictions based on the wrong model
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Ilgnoring model error leads to
overconfident and biased predictions

e ¢ Data, N =50

— Predictive mean

[ Predictive stdev
- True function

@ Given noisy data, calibrate an exponential model:

Model-data fit

1.0

Bayes Model Error

1.

1.7

1.6
<

1.5

1.4 N=50

1,

.5 0.6

07 08 09 10 11

A

Posterior on parameters

9(z) = f(z;A)
@ Employ Bayesian inference to obtain posterior PDFs on A

@ True model — dashed-red — is structurally different from fit model f(z, A)
@ Higher data amount reduces posterior and predictive uncertainty
e Increasingly sure about predictions based on the wrong model
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Ilgnoring model error leads to
overconfident and biased predictions

1. 1.
e « Data, N =50 / o + Data, N =50
1.0| — Predictive mean p? L8 1.0| — Predictive mean
B Predictive stdev . / B Predictive stdev
0.5/ - True function 5 0.5| - True function
</
> 0
—-0.
-1.0
1.0 ~Lg —05 0.0 05 1.0
X
No model error treatment Model error accounted for

@ Given noisy data, calibrate an exponential model:  g(z) =~ f(x; A)

@ Employ Bayesian inference to obtain posterior PDFs on A

@ True model — dashed-red — is structurally different from fit model f(z, \)

@ Accounting for model error allows extra uncertainty component to propagate
through predictions

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018 29



Intro ForwardUQ InverseUQ Summary Bayes Model Error

Explicit model discrepancy: issues for physical models

Y; = f(xl, )\) + 5(531) +¢€;
—_—
truth g(z;)

Explicit additive statistical model for model error §(z) (kennedy-0Hagan, 2001]

Potential violation of physical constraints

Disambiguation of model error §(z;) and data error e;

Calibration of model error on measured observable does not impact
the quality of model predictions on other Qols

Physical scientists are unlikely to augment their model with a statistical
model error term on select outputs

e Calibrated predictive model:  f(xz;A) + d(x) or f(xz; ) ?

e Problem is highlighted in model-to-model calibration (e¢; = 0)
e no a priori knowledge of the statistical structure of §(x)
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Key Idea: Model Error Embedding

Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

@ Augment input parameters \ with a stochastic term é,,

z-independent yi = f(@i; A+ 0a) + €

@ Generalize parameter forms,

Random field ¥i = f(Zis A + 0a(z:)) + &

@ More generally, explore additional parameterizations,

Intrusive yi = f(@i; A, 0a(2:) + &

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018
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Non-Intrusive Probabilistic Embedding

Additive corrections ¢, for input parameters A

B = [l A ) 4 &

@ Embed model error in specific submodel phenomenology

e a modified transport or constitutive law
e a modified formulation for a material property
o turbulent model constants

@ Allows placement of model error term in locations where key
modeling assumptions and approximations are made

@ as a correction or high-order term
@ as a possible alternate phenomenology

@ Naturally preserves model structure and physical constraints
@ Disambiguates model/data errors

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018
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Bayesian Framework for Model Error Estimation

Yi = f(zs A+ 00) + €&

@ Given data y;, perform simultaneous estimation of & = (A, «),
i.e. model parameters A\ and model-error parameters a.

@ Bayes’ theorem

Likelihood Prior
Posterior —N—

TN
G = p(ylgz)y)p(a)

Evidence

@ In order to estimate the likelihood L, (&) = p(y|&) = p(y|A, ),
one needs uncertainty propagation through f(z;; A + d,.),

stochastic

@ ... hence, we employ Polynomial Chaos (PC) representation for 4.
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Polynomial Chaos Representation of Augmented Input

Y; = f(xz, A == 6&) I €;

@ Zero-mean PC form 6, = S 1| a0 (€)
@ Functional representation of a large class of random variables
@ The PC germ ¢ is a standard random variable
e e.g. Uniform(—1,1) or Normal(0, 1)
@ The PC bases (e.g. Legendre or Hermite polynomials) are
orthogonal w.r.t. PDF of ¢

/ W, ()W (€)me(€)de = 0 form # k.

@ PC representation allows efficient
Sampling

Moment estimation
Variance-based decomposition
Uncertainty propagation (via NISP)
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Model Error — Likelihood construction
f(zis A+ 0a(C)) = fi(a, Q)

@ Define pushed-forward means and variances

pi(@) = E¢[fi(a, ¢)] and i (@) = Vel fi(@ Q)]
@ Gauss-Marginal Approximate Likelihood compares data g; and model
predictions:

ﬁg(d) ~ (QW;N/Q Hf\il o; a) eXp < 1 (gzazlé;()a)> )

@ Non-intrusive spectral projection (NISP) with Polynomial Chaos
NISP

fila, Q) = Yo fu(@)¥i(C)

@ ... provides easy access to mean and variance

(@) = fio(a) and = @) v
k#0
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Model Error — Surrogate and Prediction

NISP

fid+6a(Q) = fil&,¢) = X4 fi(@)Wr(C)

@ NISP is employed both for likelihood computation and for
posterior/pushed-forward predictions in general

@ In practice, f;(-) is replaced by a pre-constructed polynomial surrogate

@ Note: NISP with finite truncation is exact,
if one truncates NISP at the same order as the surrogate of f;(-)

@ Posterior predictive moments
pi = Eq [pi ()]

o} =Es [07(@)] + Valu(@)] + (0799)°

Model error Posterior uncertainty ~ Surrogate error
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Model error embedding — workflow

/Calibralion \

Prior p(\, @)

D Forward modeling
[j Inverse modeling

e Embedded

Model Surrogate model /\ Data
[ﬁ GSA/BF
f(zis ) f(xi; f(ai; o Likelihood

fziz A)
" J

\Ereprocess
\
/ Any Qol
[ Prediction p(h(z)|y) ]«—[ h(@; A+ da( ’—[ Posterior p(\, aly) ]
\F"fediction 5 )

@ Predictive uncertainty decomposition: Total Variance =

Parametric uncertainty + Data noise + Model error + Surrogate error
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.. back to toy example

e ¢ Data, N =50

— Predictive mean

[ Predictive stdev
True function

e ¢ Data, N =50
1.00| — Predictive mean
[ Predictive stdev
True function

=1.0 -0.5 0.0 0.5 1.0
X X
4 PDF of ), PDF of A,
40
5

39 — — —

3 N = A N =
25 — N=20 -3 — N=20
= <

2 — N=50 — N=50

15 2

1 — N =100 — N =100

d 1
6 07 08 09 10 L1 6 07 08 09 10 1.1
Joint PDF of (A,.\,) N PDF of ), Joint PDF of (A,,\,) 4 PDF of ),
1.8 24 3.5
3.9
20
14 2.
2 15 2.9
15
1q
14 14
3 05
165 08 T0 2 14 16 18 06 08 10 0017 15 18
A Ay A A

K. Sargsyan (ksargsy@sandia.gov) UM CEE/MICDE Seminar April 6, 2018



Intro  ForwardUQ InverseUQ Summary Bayes Model Error

More data leads to ‘leftover’ model error

Callibrating a quadratic f(x) = Xo + A1z + A22®

w.r.t. ‘truth’ g(z) = 6 + 2% — 0.5(z + 1) measured with noise o = 0.1.

Summary of features:

@ Well-defined model-to-model calibration N
Model-driven discrepancy correlations

e Linear (ord =1)
® Quadratic (ord =2)
e Cubic (ord = 3)
.

True order (ord = 3.5)

Average Variance across x

Disambiguates model and data errors

(]

@ Respects physical constraints

]

@ Calibrated predictions of multiple Qols

Tho 200300

T Tooon Togooo
Number of Samples, N

N =100

Data / Model

Data / Model

- Data, glx) +¢

N = 10000

8
7

Data / Model

Data, g(x) +£

100 075 050 —025 000 035 050 075 100 Yoo —075 0% -0z 00 035 050 075 100
Input, x Input, x

% =075 050 —075_ow0 0% 050 0% 100
Input, x
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E3SM Land Model (ELM) Esm

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

U of Michigan Biological Station

150 * Data —— Mean prediction B Surrogate error EE Posterior uncertainty

@ Conventional calibration without model error
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E3SM Land Model (ELM) Esm

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

U of Michigan Biological Station

1501 « Data —— Mean prediction Model error Bl Surrogate error EE Posterior uncertainty

@ Predictive variance decomposition with model-error component
@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM) Esm

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

NPP

1 U of Michigan Biological Station
8 —— Mean prediction B Surrogate error EE Posterior uncertainty
6
4
2
o
2 12 24 36 48 60 72 84 96 108 120 132 144
Month

@ Predictive variance decomposition with model-error component

@ Allows meaningful prediction of other Qols
(e.g. no data/observable)
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E3SM Land Model (ELM) Esm

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

NPP
o v s o o

1 U of Michigan Biological Station

—— Mean prediction Model error B Surrogate error EE Posterior uncertainty

-2,

12 24 36 48 60 72 84
Month

@ Predictive variance decomposition with model-error component

@ Allows meaningful prediction of other Qols
(e.g. no data/observable)

@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM) Esm

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

LHF, W/m?

Tonzi Ranch Site

100 * Data —— Mean prediction B Surrogate error EE Posterior uncertainty

@ Predictive variance decomposition with model-error component
@ Allows (a more dangerous) extrapolation to other sites
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E3SM Land Model (ELM) Esm

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

LHF, W/m?

Tonzi Ranch Site

N Data —— Mean prediction Model error Bl Surrogate error EE Posterior uncertainty

@ Predictive variance decomposition with model-error component
@ Allows (a more dangerous) extrapolation to other sites
@ ... with predictive uncertainty that captures model error
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E3SM Land Model (ELM) Esm

@ US Department of Energy (DOE) sponsored Earth system model
@ Land, atmosphere, ocean, ice, human system components
@ High-resolution, employ DOE leadership-class computing facilities

LHF, W/m?

Tonzi Ranch Site

* Data —— Mean prediction Model error Bl Surrogate error EE Posterior uncertainty
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LES: Turbulent Combustion in Scramjet Engine

@ HIFIRE (Hypersonic
International Flight Research
and Experimentation) scramjet

@ Pressure data from NASA
Langley Research Center

@ Highly complex LES model

3 50 100 50 200 3 50 60 50 200
Location, x/d Location, x/d

@ Augmenting model error leads to more ‘physical’ likelihood
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Summary

@ Forward UQ: Polynomial Chaos representation of RVs

e Non-intrusive spectral projection
@ Surrogate construction, Bayesian regression
o High-D challenge: sparse PC via Bayesian compressive sensing

@ Inverse UQ: Bayesian inference for parameter estimation

e Bayesian parameter estimation
o Model error quantification: embedded model error approach

@ All developments done within UQTK, lightweight C++/Python library
out of SNL-CA (www.sandia.gov/uqtoolkit)

UQIk
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Multivariate Polynomial Chaos

@ Multivariate polynomial

K
Vi(§) = ta; (&) Ya, (§n)
Ul = Zulk\yk(fh e 7571)
0 @ Usuallyd=n

Ko @ Construction non-trivial: e.g., capture
Us :Zqu\Dk(gl,...,gn) o the PDF of U
k=0

@ select moments of U
@ some Qol h(U)

@ Multivariate normal is a special case

Ky .
@ Multiindex (au, ..., ax) selection,
Ug = Z uak V(&1 -5 &n) Truncation; see later
k=0

@ Rosenblatt map
(multivariate CDF transform)
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Multivariate Polynomial Chaos

@ Multivariate polynomial

K
Vi(§) = ta; (&) Ya, (§n)
Ul = Zulk\yk(fh e 7571)
0 @ Usuallyd=n

Ko @ Construction non-trivial: e.g., capture
Us ZZqu\I’k(&,.--,in) o the PDF of U
k=0

@ select moments of U
@ some Qol h(U)

@ Multivariate normal is a special case

Ky .
@ Multiindex (au, ..., ax) selection,
Ug = Z uak V(&1 -5 &n) Truncation; see later
k=0

@ Rosenblatt map
(multivariate CDF transform)

Fun example: X = &7 + ¢2 is exponential r.v. if £'s are i.i.d. gaussians.
However, no finite order 1D PC exists.
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Non-intrusive Spectral Projection (NISP) PC UQ

K K
U~ upy(€) Z=f(U)~) a¥(&)
k=0 k=0
@ For any model output of interest f(X):
(ZW})
= g = e ] S @) m@me(erag

@ Evaluate projection integral numerically
@ Relies on black-box utilization of the computational model
@ Integral can be evaluated using
— A variety of (Quasi) Monte Carlo methods
e Slow convergence; ~ indep. of dimensionality
— Quadrature/Sparse-Quadrature methods
e Fast convergence; depends on dimensionality
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PC features: moment extraction

K
Z Y 50k (€)
k=0

@ Expectation: (Z) = 2
@ Variance o2

K
of = <<Z—<Z>>2>=<<Z%‘Pk<€>>2>

K

K K
= Zszzk (U;(&)¥R(€)) = Zzli”‘l’k”Q

k=1 j=1 k=1
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PC features: Global Sensitivity Analysis z(€) ~ > z..(¢)

@ Main effect sensitivity indices

_ Var[E(Z(€l&)] _ Zren, 214l

S; -
Var[Z(€)] > k=0 2l Wk |2

o [; is the set of bases with only ¢; involved
e S, is the uncertainty contribution that is due to i-th parameter only

@ Total effect sensitivity indices

 Var[E(Z(g[e-)]) _ Zwerr 2l Vel
Var[Z()] > k=0 2l [ Wk |2

17 is the set of bases with ¢; involved, including all its interactions.

TZL‘:
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PC features: Global Sensitivity Analysis z(€) ~ > z..(¢)

@ Main effect sensitivity indices

_ Var[E(Z(€l&)] _ Zren, 214l

S; -
Var[Z(€)] > k=0 2l Wk |2

o [; is the set of bases with only ¢; involved
e S, is the uncertainty contribution that is due to i-th parameter only

@ Joint sensitivity indices

Ekeﬂij ZIQCH‘IIIC‘ |2
2 k>0 2| W2

o _ VarlE(Z(E. )
9T VarlZ(e)

— 5 -8, =

e I,; is the set of bases with only ¢ and &; involved
e S;; is the uncertainty contribution that is due to (i, j) parameter pair
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Alternative methods to obtain PC coefficients

K
szlllk

k=0
e Projection Zk - ﬁq,q:ﬁ(zg)
The integral (f(€) = [ (&) Ur(€)me (€)dE is estimated by...

e Monte-Carlo

72]0

° Quadrature

j=1

many(!) random samples

samples at quadrature
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Alternative methods to obtain PC coefficients

K
szlllk

k=0
o Projection Zk — M
The integral (f(£) ff &g (€)d¢ is estimated by...
e Monte-Carlo
N
% D FE)Wr(E)) many(!) random samples

j=1
e Quadrature

Q

samples at quadrature

e Bayesian regression o
P(alf(€))  P(f(€,)lz0)P(z) ..~ @ny(numberof) samples
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Alternative methods to obtain PC coefficients

K
szlllk

k=0
o Projection zk = %
The integral {f(&) = [f(&) £(§)d§ is estimated by...

e Monte-Carlo

1 N
~ 2 (€)Uk(E))
=1
° ]Quadrature
Q
> F(&) Tk (E)w,
j=1

e Bayesian regression S
P(z|D) x P(D|z) P(z) o any (number of) samples
N——

many(!) random samples

samples at quadrature

Posterior Likelihood Prior
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Surrogate construction: scope and challenges

Construct surrogate for a complex model  f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration
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Surrogate construction: scope and challenges
Construct surrogate for a complex model  f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

e Computationally expensive model simulations, data sparsity

Need to build accurate surrogates with as few training
runs as possible
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Surrogate construction: scope and challenges
Construct surrogate for a complex model  f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

e Computationally expensive model simulations, data sparsity

Need to build accurate surrogates with as few training
runs as possible

e High-dimensional input space
Too many samples needed to cover the space
Too many terms in the polynomial expansion
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Probabilistic Forward UQ & Polynomial Chaos
Representation of Random Variables

With y = f(x), z a random variable, estimate the RV y

@ Can describe a RV in terms of its

e density, moments, characteristic function, or
e as a function on a probability space

@ Constraining the analysis to RVs with finite variance

= Represent RV as a spectral expansion in terms of orthogonal
functions of standard RVs

— Polynomial Chaos Expansion

@ Enables the use of available functional analysis methods for forward
uQ
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Sensitivity indices are directly computable from PC

P

9(&) = ex Wk ()

k=0
Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,62,83) =co+ (&) + cevv1(€2) + cav1(€3) +
+ capa(§1) + esP1(€)n(§2) + ce1(€1)¥1(€3) + crypa(€e) + cspr(§2)¥1(€s) + corpa(€3)

Variance contributions

Var(g) =0+ i (47) + 3(W7) + c3(7) +

+ciWd) + AWl + Gl + Fwd) + EWh W) + BW3)
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Sensitivity indices are directly computable from PC

P
9(&) =D cxTi(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,82,83) = co +[e1ha(€1) + c2v1(§2) + cspi(€s) +
+eava(81) + cs1(€1)v1(82) + cevvr(€1)vn(€3) + crpa(82) + csbr(€2)¥1(€3) + covpa(€s)

Variance contributions

Var(g) =0+ @) + c5(Wi) + 37 +

+ea@s) + W) + GWhW?) + EWd) + G W) + c3(y3)

Main effect sensitivities (& & &3
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P
9(&) =D cxTi(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.
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Variance contributions
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Main effect sensitivities & & &3
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P
9(&) =D cxTi(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,62,863) = co+ c1v1(ér) + cavvn(€2) +|esvi(€3) +
+ cap2(€1) + cspr(&)v1(€2) + cepr(§1)v1(€3) + crpa(82) + csr(€2)v1(€3) + | cotha(E3)

Variance contributions

Var(g) =0+ cf(¥7) + 31 +[eg@i) +

+ 3 @W3) + EWhHW?) + GWhHW) + W) + AW Wi + s)

Main effect sensitivities & & [&3
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Sensitivity indices are directly computable from PC

9(&) = Y cxTk(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

g(&1,€2,€3) = co +-+ ca1(&2) + cavr(€3) +
D+ RG] + B - - v-() + o (€01 (6) + coa(e)

Variance contributions
Var(g) = 0+ [@ER) + Awh + Awd +
HAWE) + (SR - [BEUBHER) + 2wd + dwhwh + Ewd

Total sensitivities. & &
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Sensitivity indices are directly computable from PC

P
9(&) =D cxTi(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,82,83) = co+ crpi(&r) + eai(&2) + c3v1(&3) +
+ catpo(61) +lesr(€1)P1(E2) + covr(€1)vn(€3) + ertha(82) + esbn(E2)¥1(€3) + cov2(E3)

Variance contributions
Var(g) =0+ cf(¥7) + &@i) + 3ui) +

+ i 3) + @WH@T) + WD W?) + W) + W) + 3(v3)

Total sensitivities & & &3
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(&) = cxWi()
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(&1,82,83) =co+ carv1(€1) + cavp1(€2) +-+
+ cap2(€1) + csr(&1)va(€e) +_+ crp2(€2)

Variance contributions

Var(g) =0+ dwd) + Bl +|Ga) +
+Awd) + Ewhed) + B + 33

Total sensitivities &1 &2 .

+ dehd) - Gl
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Sensitivity indices are directly computable from PC

P
9(&) =D cxTi(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(€1,62,83) = co + c1y1(&1) + cavp1(§2) + cspi(€s) +
+ catp2(61) +lesr(€)P1(E2) + cov1(€1)v1(€3) + crpa(82) + csbr(€2)¥1(€3) + covpa2(€s)

Variance contributions

Var(g9) =0+ F(¥7) + 3@i) + 3@7) +

+ 3W3) + @) + WD WD) + FW3) + W) + 3(W3)

Joint sensitivities [(&,&) (&1,£3) (&2,8)
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Sensitivity indices are directly computable from PC

P
9(&) =D cxTi(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(€1,62,83) = co + c1y1(&1) + cavp1(§2) + cspi(€s) +
+ cap2(81) + cs1(€)v1(€2) +leetn(§1)vn(€3) + crp2(82) + csbr(€2)v1(€3) + covpa(€s)

Variance contributions

Var(g9) =0+ F(¥7) + 3@i) + 3@7) +

+ W3 + WD) + @@ + (w3 + W W) + c¥3)

Joint sensitivities (£1,&) (€1,&) (&2,&3)
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Sensitivity indices are directly computable from PC

P
9(&) =D cxTi(§)
k=0

Consider dimensionality d = 3, total order p = 2,
number of PC terms P + 1 = (d + p)!/(d!p!) = 10.

9(€1,62,83) = co + c1y1(&1) + cavp1(§2) + cspi(€s) +
+ cap2(81) + es1(€)v1(€2) + cevvr(€1)vn(€3) + crpa(82) + e (€2)¥1(€3) + cov2(E3)

Variance contributions

Var(g9) =0+ F(¥7) + 3@i) + 3@7) +

+ i @W3) + W) + GWhW?) + EW3) + | @MW) + 3(v3)

Joint sensitivities (£1,&) (&1,63) (€2,&3)



Intro ForwardUQ InverseUQ Summary

Other non-intrusive methods (stochastic collocation)

@ Interpolation: Fit interpolant to samples
e Oscillation concern in multi-D

@ Regression: Estimate best-fit response surface
o Least-squares
@ Sparsity via ¢; constraints; compressive sensing
e Bayesian inference
@ Sparsity via Laplace priors; Bayesian compressive sensing
e Useful when quadrature methods are infeasible, e.g.:
— Samples given a priori
— Can’t choose sample locations
— Can't take enough samples
— Forward model is noisy
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PCE Construction for Noisy Functions

@ Quadrature formulae presume a degree of smoothness
— No convergence for a noisy function

Uk = \I/i>/ pe(§)dg, k=0,...,P

@ Sparse-Quadrature formulae are ill-conditioned and highly-sensitive
to noise
— No convergence with order
— Error grows with increased dimensionality
@ Options in the presence of noise:

o RMS fitting for PC coefficients
e Bayesian inference of PC coefficients
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PC and High-Dimensionality

Dimensionality n of the PC basis: € = {&1,...,&,}
@ n ~ number of uncertain parameters
@ P+1=(n+p)!/nlp! grows fast with n
Impacts:

@ Size of intrusive PC system
@ Hi-D projection integrals = large # non-intrusive samples
@ Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level =3 Clenshaw-Curtis sparse grid, Level = 5
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PC coefficients via sparse regression

PCE:
K-1
Ck\I/k
k=0
with z € R", ¥;, max order p, and K = (p + n)!/p!/n!
o N SampIeS (w1,y1), ceey (xN,yN)
@ Estimate K terms cg,...,cx_1, S.1.

min ||y — Acl[3
where y € RV, c € RE, Ay, = Up(x;), A € RVXE

With N << K = under-determined
@ Need some form of regularization
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Regularization — Compressive Sensing (CS)

@ /y-norm — Tikhonov regularization; Ridge regression:
min {|ly — Acll3 + ||c[|3}
@ /1-norm — Compressive Sensing; LASSO; basis pursuit

min {|ly — Acl3 + [le]:}
min {|ly — Ac|3} subject to |lc||; < e
min {||c|[1} subject to ||y — Ac|% < e

= discovery of sparse signals @ N
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Bayesian Regression

@ Bayes formula
p(c|D) o p(Dle)w(c)

@ Bayesian regression: prior as a regularizer, e.g.

e Log Likelihood < ||y — Ac||3
e Log Prior < |[c|b

o Laplace sparsity priors m(ci|a) = 5e~lexl/@
@ LASSO (Tibshirani 1996) ... formally:

min {[ly — Ac[l3 + Allell1}

Solution ~ the posterior mode of ¢ in the Bayesian model

1
yNN(AC,IN), CE ~ f€7|ck|/a
2

@ Bayesian LASSO (Park & Casella 2008)
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Bayesian Compressive Sensing (BCS)

@ BCS (Ji 2008; Babacan 2010)— hierarchical priors:
e Gaussian priors N(0,0%) on the ¢,
e Gamma priors on the o7
= Laplace sparsity priors on the ¢
@ Evidence maximization establishes ML estimates of the o},

e many of which are found~0 = ¢, =0
o iteratively include terms that lead to the largest increase in the
evidence

@ iterative BCS (iBCS) (sargsyan 2012):

e adaptive iterative order growth
e BCS on order-p Legendre-Uniform PC
e repeat with order-p + 1 terms added to surviving p-th order terms
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Bayesian inference of PC surrogate

Posterior Likelihood Prior

K ——
Z=§€)~ £ =YK a0  PED) x (D) Pz)

@ Data consists of training runs
D ={(&,Z)}L,

@ Likelihood with a gaussian noise model with o2 fixed or inferred,

L(z) = P(D|z) = (J 12W)Nﬂexp (_0‘—2{‘@”2)

@ Prior on z is chosen to be conjugate, uniform or gaussian.

@ Posterior is a multivariate normal
z € MVN(p,X)

@ The (uncertain) surrogate is a gaussian process

szwk ©7F € GPEE) n TEZT(E))
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Bayesian Compressive Sensing

e Dimensionality reduction by using hierarchical priors

2 1 T 3252 2 « ,"“’i
Op) = ——e€ k opla) = —e 2
p(frlok) o p(ok]a)

o Effectively, one obtains Laplace sparsity prior
K-1
a - «@
p(e|la) = Hp felot)p(or|a)dor = H %e Val fil
k=0

e The parameter a can be further modeled hierarchically, or fixed.

e Evidence maximization dictates values for o2, ., 0% and allows exact
Bayesian solution

f~ MVYN(p, X)
with
p=o0’SP"u = o> (PT P + diag(c” /o))"

e KEY: Some o7 — 0, hence the corresponding basis terms are dropped.
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Weighted Bayesian Compressive Sensing

e Dimensionality reduction by using hierarchical priors

7 )
; N > oy _okok

Tk} = € . orlar) = —e 2

PR = e ploklar) = 5
o Effectively, one obtains Laplace sparsity prior
K-1

ak - 5 o
pleler) = HP felot)p(ok|aw)doi = kUO \Ce Varl fxl

e The parameter oy, can be further modeled hierarchically, or fixed.
e Evidence maximization dictates values for o2, as., o2 and allows exact
Bayesian solution
.f ~ MVN(“” E)
with
p=0cSP"u 3 = o*(PT P + diag(c” /o))"

e KEY: Some o7 — 0, hence the corresponding basis terms are dropped.
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lteratively reweighting Compressive Sensing [Candes et al., 2007]
Sparsest solution: minl||f|lo such that Z ~ P f
Compressive sensing: minl||f||1 such that Z ~ P f

Weighted compressive sensing: min||W f||; such that Z ~ P f
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lteratively reweighting Compressive Sensing [Candes et al., 2007]
Sparsest solution: minl||f|lo such that Z ~ P f
Compressive sensing: minl||f||1 such that Z ~ P f

Weighted compressive sensing: min||W f||; such that Z ~ P f

For sparse signals, Z = P f*, with || f*||o = S < K, ideal weights are

W = diag (\f ’> li.e., Wi = +o0if fi = 0]
k

In practice, the true signal coefficients are not known, so...
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lteratively reweighting Compressive Sensing [Candes et al., 2007]
Sparsest solution: minl||f|lo such that Z ~ P f
Compressive sensing: minl||f||1 such that Z ~ P f

Weighted compressive sensing: min||W f||; such that Z ~ P f

For sparse signals, Z = P f*, with || f*||o = S < K, ideal weights are

W = diag <‘fls’> li.e., Wi = +o0if fi = 0]
k

In practice, the true signal coefficients are not known, so...

lterative re-weighting

. 1
Wt = diag <> [e < 1 for stability]



Intro ForwardUQ InverseUQ Summary

Random Fields

@ A random variable is a function on an event space {2
e No dependence on other coordinates —e.g. space or time

@ A random field is a function on a product space Q2 x D
e e.g. sea surface temperature Tys(z,w), z = (x, 1)

@ Itis a more complex object than a random variable
e A combination of an infinite number of random variables

@ In many physical systems, uncertain field quantities, described by
random fields:
e are smooth, i.e.
e they have an underlying low dimensional structure

due to large correlation length-scales
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Random Fields — KLE

@ Smooth random fields can be represented with a small no. of
stochastic degrees of freedom
@ Arandom field M (z,w) with

— a mean function: u(x)
— a continuous covariance function:

C(z1,m2) = ([M(21,w) — p(@1)][M (22, W) — p(x2)])
can be represented with the Karhunen-Loeve Expansion (KLE)

M(z,w) = p(x) + > v/ Nimi(w)i()
i—1

where

e )\; and ¢;(x) are the eigenvalues and eigenfunctions of the
covariance function C(-, -)
e 7, are uncorrelated zero-mean unit-variance RVs

@ KLE = representation of random fields using PC
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Intrusive PC UQ: A direct non-sampling method

@ Given model equations: _

@ Express uncertain parameters/variables using PCEs

P P
U= Zuk‘l’k; A= Z YA
k=0 k=0

@ Substitute in model equations; apply Galerkin projection

@ New set of equations: —

- withU = [UO,...,UP]T,A: [Ao,...,)\p]T

@ Solving this deterministic system once provides the full specification
of uncertain model ouputs
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Intrusive Galerkin PC ODE System

Say f(u; A) = Au, then
duZ

§ MptigCrgi, i=0,--- P
p=0 q=0

where the tensor C,q; = (¥, ¥, ;) /(¥?) is readily evaluated



Intro ForwardUQ InverseUQ Summary

Intrusive PC UQ Pros/Cons

Cons:
@ Reformulation of governing equations
@ New discretizations
@ New numerical solution method

— Consistency, Convergence, Stability
— Global vs. multi-element local PC constructions

New solvers and model codes
— Opportunities for automated code transformation
@ New preconditioners

Pros:
@ Tailored solvers can deliver superior performance
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Model Evidence and Complexity

Let M = {M;, My, ...} be a set of models of interest

@ Parameter estimation from data is conditioned on the model
D16, M, 0| M,
p(@‘D,M;& _ p( | ) k)ﬂ-( ‘ k)
p(D|My)

Evidence (marginal likelihood) for Mj:
p(DIM) = [ (D16 M) (6134)40

Model evidence is useful for model selection

@ Choose model with maximum evidence
@ Compromise between fitting data and model complexity

e Optimal complexity — Occam’s razor principle
e Avoid overfitting
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order = 1
_3_f
yi = ad+a?—6+¢ — Fitted model
-4.0f| » e Noisy data
€ N(O, S) --- True function :
-4.5
Bayesian regression with Legendre S, > o
PCE fit models, order 1-10 Pt
P -6. '/.’ /’ e
Ym = Z quﬂk(w) 65715 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors w(c;), k =0,..., P ,
posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order =2
-3.5
Yi = $3 + g;z — 6+ ¢ — Fitted model
v ! -4.0f| » e Noisy data
€ N(O, S) --- True function i
-4.5
Bayesian regression with Legendre S, //
PCE fit models, order 1-10 55 /i
P -6. '\\0,
Ym = Z quﬂk(w) 65715 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order =3
-3.5
Yi = xf + 1‘,2 —6+¢ — Fitted model
-4.0f| » e Noisy data
€ N(O, S) --- True function
45 /
Bayesian regression with Legendre . /
PCE fit models, order 1-10 55 A
p 6. ﬂ""""ﬁ‘ %‘/
Ym = Z quﬂk(w) 65—% 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order =4
-3.5
Yi = .1‘3 + 1‘2 — 6+ ¢ — Fitted model
v ! -4.0f| » e Noisy data
€ N(O, S) --- True function
a5 /
Bayesian regression with Legendre . /
PCE fit models, order 1-10 55 /e
P -6. ﬁ’ﬁ“ ° .-"x
Ym = Z quﬂk(w) 65—% 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order =5
-3.5
Yi = .1‘3 + 1‘2 — 6+ ¢ — Fitted model
v ! -4.0f| » e Noisy data
€ N(O, S) --- True function
a5 /
Bayesian regression with Legendre .
PCE fit models, order 1-10 55 A
P -6. Kfs"m‘. o
Ym = Z quﬂk(w) 65—% 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order =6
-3.5
Yi = xf + 1‘,2 —6+¢ — Fitted model
-4.0f| » e Noisy data
€ N(O, S) --- True function
w4 f
Bayesian regression with Legendre . /
PCE fit models, order 1-10 55 A
, . [P 37
Ym = Z quﬂk(w) 65—% 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order=7
_3_f
Yi = $3 —+ g;z —6 + ¢ — Fitted model
t ¢ -4.0f| » e Noisy data
€ N(O, S) --- True function o
-4.5
Bayesian regression with Legendre . //
PCE fit models, order 1-10 55 A
P ol T \.J/(_/
Ym = Z Ck¢k($) 65— =635 00 05 70
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order = 8
-3.5
Yi = .1‘3 + 1‘2 — 6+ ¢ — Fitted model
v ! -4.0f| » e Noisy data
€ N(O, S) P True function /;'
Bayesian regression with Legendre S, //
PCE fit models, order 1-10 53 A
" - iy L J/‘,"—
P : ~
Ym = Z quﬂk(w) 65715 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order =9
-3.5
Yi = $3 + g;z — 6+ ¢ — Fitted model
v ! -4.0f| » e Noisy data
€ N(O, S) --- True function /;'
-4.5
Bayesian regression with Legendre S, /
PCE fit models, order 1-10 5.3 v
Ym = Z quﬂk(w) 65715 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Too much model complexity leads to overfitting

Data model: i=1,...,N

Order =10
-3.5
yi = ad+a?—6+¢ — Fitted model I
-4.0f| » e Noisy data
€ N(O, S) asl True function l;’
Bayesian regression with Legendre S, /l
PCE fit models, order 1-10 5.9 B
P -6. "XA\'\--..,_J/..-'/';’
Ym = Z quﬂk(w) 65715 0.5 0.0 0.5 1.0
k=0

Fitted model pushed-forward

Uniform priors ,k=0,...,P .
P m(c) posterior versus the data
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Evidence and Cross-Validation Error

20,

@ Model evidence peaks at the
true polynomial order of 3

............
................

@ Cross validation error is equally i AN
2

minimal at order 3 T T TS
o H el —
. . 8] R I N
@ Models with optimal complexity £ =7 !
are robust to cross validation - | )
—60}
-8 / e-e Fit

o= Complexity
e Evidence

5 7 8 9 10
Order

Log evidence: sum of two
scores, balances complexity & fit
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Evidence and Cross-Validation Error

@ Model evidence peaks at the
true polynomial order of 3

@ Cross validation error is equally
minimal at order 3

@ Models with optimal complexity
are robust to cross validation

Log (Evidence)
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Cross validation error and model
evidence versus order
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Laundry List of Challenges/Issues (incomplete)

@ High-Dimensionality
@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity
@ Model Errors

@ Input Correlations

@ Low-Probability (Tail) Events
@ Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

@ High-Dimensionality
e Large number of input parameters
e Dense spatial/temporal grid
e PC truncation is a challenge

Low-rank (tensor) representations
Sparse learning, (Bayesian) compressive sensing

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity

@ Model Errors

@ Input Correlations

@ Low-Probability (Tail) Events

@ Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

High-Dimensionality
Expensive Models
e UQ studies seriously hindered
Need surrogates with few model simulations

Non-Linear Models, Discontinuities, Bimodalities
Scarce Data

Intrinsic Stochasticity

Model Errors

Input Correlations

Low-Probability (Tail) Events

Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

High-Dimensionality
Expensive Models
Non-Linear Models, Discontinuities, Bimodalities

e Polynomial representation not good enough
e Quadrature integration fails

Stochastic domain decomposition
Data clustering/classification

@ Scarce Data

@ Intrinsic Stochasticity
@ Model Errors

@ Input Correlations
°

°

Low-Probability (Tail) Events
Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

High-Dimensionality

Expensive Models

Non-Linear Models, Discontinuities, Bimodalities
Scarce Data

e Bayesian inference is prior-dominated
e Lack of parameter identifiability

Bayesian methods do quantify lack-of-data uncertainty
@ Intrinsic Stochasticity
@ Model Errors
@ Input Correlations
°
°

Low-Probability (Tail) Events
Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity

e Quadrature and sparse quadrature methods fail

Averaged quantities
Bayesian regression

Model Errors

Input Correlations
Low-Probability (Tail) Events
Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity

@ Model Errors

e Models are not perfect
e Can not be ignored during parameter estimation

Additive model error as a Gaussian Process
Embedded model error

Input Correlations
Low-Probability (Tail) Events
Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity

@ Model Errors

@ Input Correlations

e Hard to sample from
e Hard to interpret sensitivities

Rosenblatt transformation
Low-Probability (Tail) Events
Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

@ High-Dimensionality

@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities

@ Scarce Data

@ Intrinsic Stochasticity

@ Model Errors

@ Input Correlations

@ Low-Probability (Tail) Events

e PC inaccurate in capturing regions of low probability
Use targeted PC germs ¢ with fat tails

Time Dynamics
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Laundry List of Challenges/Issues (incomplete)

@ High-Dimensionality
@ Expensive Models

@ Non-Linear Models, Discontinuities, Bimodalities
@ Scarce Data

@ Intrinsic Stochasticity
@ Model Errors

@ Input Correlations

@ Low-Probability (Tail) Events

@ Time Dynamics

e Large amplification of phase errors over long time horizon
e Chaotic dynamics

Increase order with time to retain accuracy
Ad-hoc corrections
Look at averaged quantities
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Challenges in PC UQ — High-Dimensionality

@ Dimensionality n of the PC basis: & = {&1,...,&.}
— number of degrees of freedom
— P+ 1= (n+p)!/nlp! grows fast with n
@ Impacts:
— Size of intrusive system
— # non-intrusive (sparse) quadrature samples
@ Generally n ~ number of uncertain parameters
@ Reduction of n:
— Sensitivity analysis
— Dependencies/correlations among parameters
— Dominant eigenmodes of random fields
Manifold learning: Isomap, Diffusion maps
Sparsification: Compressed Sensing, LASSO
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High dimensionality challenge — Forward UQ

Consider a forward model
y = f(x)

Let z € R™ be uncertain, represented as a random vector,
x ~ p(x)
Estimate moments of y
M1 = [1f(@)tp()da

Forward UQ is an integration problem.



Intro ForwardUQ InverseUQ Summary

Integration in High Dimensions

@ Monte Carlo (MC) methods
o well suited for high-D integrals — convergence rate independent of
dimensionality
@ nonetheless they require large numbers of samples for good
accuracy
@ Quadrature
e Tensor product quadrature is useless in hi-D
— Say m points in each of n dimensions: m™ points
e Adaptive sparse quadrature

— Much more feasible
— Can beat MC — dep. on smoothness of integrand

e Greedy algorithms
@ Dimensionality reduction

e Low rank and sparse representations
o Global sensitivity analysis
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High dimensionality challenge — Inverse UQ

@ Bayesian inference in a computational setting relies on Markov
Chain Monte Carlo (MCMC) methods

@ MCMC: A random walk algorithm for generation of samples from
the posterior density on model inputs

e Moments are evaluated from the random samples

@ Need many random sample evaluations of forward model
— Employ model surrogates built via forward UQ
— Adaptive local surrogates
@ High dimensionality can lead to poor performance
— local maxima
— many directions uninformed by data
— choice of proposal density
— Dimension-Adaptive Likelihood-Informed MCMC



Intro ForwardUQ InverseUQ Summary

Bayesian inference — High Dimensionality Challenge

@ Judgement on local/global posterior peaks is difficult
e Multiple chains; Tempering

@ Choosing a good starting point is very important
e An initial optimization strategy is useful, albeit not trivial

@ Choosing good MCMC proposals, and attaining good mixing
o Likelihood-informed
— Markov jump in those dimensions informed by data
Sample from prior in complement of dimensions
Adaptive proposal learning from MCMC samples
Log-Posterior Hessian = local Gaussian approx.
Adaptive, Geometric, Langevin MCMC

e Dimension independent
— Proposal design: good MCMC performance in hiD

o Literature: A. Stuart, M. Girolami, K. Law, T. Cui, Y. Marzouk
(Law 2014; Cui et al., 2014,2015; Cotter et al., 2013)
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Curse of Dimensionality

(Dim-adaptive) Sparse quadrature integration [Gerstner, 2003]
High Dimensional Model Representation [Rabitz & Alis, 1999]

e would not handle strong nonlinearities
e tried cut-HDMR in a chemical kinetics context: fails!

Proper Generalized Decomposition [Nuoy, 2010]

Turn it into the blessing of dimensionality [Donoho, 2000]
Compressive sensing in spectral methods [Doostan et al., 2009]
Bayesian compressive sensing [Ji et al., 2008]
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Curse of Dimensionality

(Dim-adaptive) Sparse quadrature integration [Gerstner, 2003]
High Dimensional Model Representation [Rabitz & Alis, 1999]

e would not handle strong nonlinearities
e tried cut-HDMR in a chemical kinetics context: fails!

Proper Generalized Decomposition [Nuoy, 2010]

Turn it into the blessing of dimensionality [Donoho, 2000]
Compressive sensing in spectral methods [Doostan et al., 2009]
Bayesian compressive sensing [Ji et al., 2008]

short answer: no free lunch
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Challenges in PC UQ — Non-Linearity

@ Bifurcative response at critical parameter values
e Rayleigh-Bénard convection
e Transition to turbulence
e Chemical ignition
@ Discontinuous u(\(£))
e Failure of global PCEs in terms of smooth ¥, ()
o « failure of Fourier series in representing a step function
@ Local PC methods
e Subdivide support of A(£) into regions of smooth u o A(&)
e Employ PC with compact support basis on each region
o A spectral-element vs. spectral construction

e Domain mapping
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Discontinuities/Nonlinearities/Bifurcations

e Stochastic domain decomposition

Wiener-Haar expansions,
Multiblock expansions,
Multiwavelets, [Le Maitre et al, 2004,2007]

also known as Multielement PC [Wan & Karniadakis, 2009]

Data domain decomposition [Sargsyan et al, 2009,2010]
Data clustering, classification
Mixture PC expansions

Adaptive setting helps
Does not scale with dimensionality
For expensive models, can not split much

Need a ‘smart’ domain decomposition
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Challenges in PC UQ — Time Dynamics

@ Systems with limit-cycle or chaotic dynamics

@ Large amplification of phase errors over long time horizon
@ PC order needs to be increased in time to retain accuracy
@ Time shifting/scaling remedies

@ Futile to attempt representation of detailed turbulent velocity field
v(x,t; \(&)) as a PCE
— Fast loss of correlation due to energy cascade
— Problem studied in 60’s and 70’s
@ Focus on flow statistics, e.g. Mean/RMS quantities

e Well behaved
e Argues for non-intrusive methods with DNS/LES of turbulent flow
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Model Complexity challenge

@ If a single model run is a challenge then UQ is infeasible

@ Most physical model output quantities of interest depend on only a
“small” number of parameters, however:

o Global sensitivity analysis itself requires many samples
e Even after reduction of dimensionality to, say, 5 parameters, O(100)
samples may be necessary
@ Large number of independent samples
— ideally suited for HPC
@ Multifidelity UQ methods are useful — forward UQ
e Use combinations of many low-resolution/low-fidelity runs with a few
high-resolution/high-fidelity runs

@ Parallel MCMC methods — inverse UQ
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Data Scarcity Challenge

@ Even in a “big-Data” context, it's common to find no information in
the data on many big-model parameters
e Situation is typical in statistical inversion for field quantities
e Bayesian inference of optimal random field constructions
e Use adaptive MCMC methods that focus on data-informed
parameters

@ Usually, raw data is not published

e Published “data” is essentially processed data products, being
statistics on

— the data, or functions of fitted model parameters
o Use Maximum-Entropy and Approximate Bayesian Computation
(ABC) methods — DFI
— Discover posterior density on model parameters consistent
with published statistics
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Input correlations: Rosenblatt transformation
e Rosenblatt transformation maps any (not necessarily independent) set of

random variables £ = (&1, ..., &) to uniform i.i.d’s {n:}?_, [Rosenblatt. 19521.
m = Fi(&)

ne = Ip1(&6)

s = F32,1(&162,61)

M = Fopno1,...1(&nlén-1,...,&1)

Cellulose Labile

e Inverse Rosenblatt transformation &€ = R™*(n) ensures a well-defined
quadrature integration to build PC [Sargsyan et al., 2010]

cr = (E¥r(n /R

e Caveat: if only samples of ¢ are available, the conditional distributions are
hard to evaluate accurately.
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