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Uncertainty in computations

@ Uncertainty quantification: usually ill-posed problems, epistemic
uncertainty set-up of computation

@ Stochastic numerical methods: aleatoric (inherent) randomness,
repeated computations

@ Probabilistic numerics: well-posed deterministic problems,
turned into a learning problem
e Estimate uncertainty due to the numerical method itself

@ Integration

@ Optimization
@ Linear solvers
o PDE/ODE
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Probabilistic numerics, handy if...

@ one needs to propagate through some computational pipeline.
E.g., machine learning methods are simply chains of

linear algebra (least-sq.)

optimization (fitting)

integration (MCMC, nuisance parameters)
diff. eq. (control)

@ one has noisy function evaluations, or a built-in UQ problem, e.g.
uncertain input parameters

@ interested in accuracy-vs-time tradeoff... what if we stop short in
any computational endeavor?
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Background: Bayesian paradigm

Bayesian paradigm:
@ Quantify the unknown with probability distribution
@ Data model: d ~ f(m)

@ Bayes formula Likelihood ~ Prior

Sy M) plm)

Posterior
p(d)

Evidence

Ingredients:
@ Prior: knowledge of m prior to data
@ Likelihood: fit forward model to data; measurement noise
@ Posterior: combines information from prior and data
@ Evidence: normalizing constant; useful for model selection
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Background: Bayesian paradigm

@ Bayes formula Likelihood ~ Prior

Sy ) p(m)

Posterior -
p(d)

Evidence
Allows:
@ Flexible way of combining prior knowledge and data
@ Dealing with heterogeneous sources of uncertainty
@ Sequential setting
@ Quantifying lack-of-knowledge (information content)
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Background: Gaussian Processes (GP)

@ Extension of normal r.v. to stochastic processes; Scalar = Function

@ f(x)isaGP < f(x1),f(x2),...,f(xs) is multivariate normal r.v. for any {x;}/_,
@ A GP is defined by its mean function p(x) and covariance function C(x,x")

@ A good resource is www.gaussianprocess.org/

@ ... even better, the Rasmussen & Williams book

© www.gaussianprocess.org/gprm/ *Ova@
Gaussian Processes for Machine Learning

Carl Edward Rasmussen and Christopher K. 1. Williams
The MIT Press, 2006. ISBN 0-262-18253-X.

[ Contents | Software | Datasets | Errata | Authors | Order ]
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Background: Gaussian Processes (GP)

@ Extension of normal r.v. to stochastic processes; Scalar = Function

@ f(x)isaGP < f(x1),f(x2),...,f(xs) is multivariate normal r.v. for any {x;}/_,
@ A GP is defined by its mean function p(x) and covariance function C(x,x")

@ GP regression, or kriging, is a handy tool for surrogate model construction

@ Can be posed in a Bayesian context, i.e. given f; = f(x;) fori = 1,...,N, learn
mean and covariance functions, or point value at any x*

Posterior Likelihood (Lin. Alg.) Prior
* N N * *
PO {f (itizr) oc p(f (xidiza [F (7)) p(F(x7)) (1)
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Probabilistic numerics

Deep connections

@ Gaussian quadrature < GP regression

@ Conj. gradients < Gaussian conditioning

@ BFGS < autoregressive filtering

@ Runge-Kutta < Gauss-Markov extrapolation

Problem class integration linear opt. nonlinear opt. ODE IVDPs
inferred z z=f; [ f(z)dz z2=A"Y Az=b 2=B=vv'f 2'(t)=f(z(t),t)
classic method  Gaussian quad.  conjugate gradients BEGS Runge-Kutta
p(2) GP(f:p. k) N(ATHMY) GP(z:p,k) GP (2, k)
p(y]2) I(f(zi) =vi) I(y; = Ax;) I(y; = B;) I(y; =2'(1))
decision rule minimize gradient at gradient under evaluate at
post. variance est. solution est. Hessian est. solution

Table 1. Probabilistic description of several basic numerical problems (shortened notation for brevity). In quadrature,
(symmetric positive definite) linear optimization, non-linear optimization, and the solution of ordinary differential equation
initial value problems, classic methods can be cast as maximum a-posteriori estimation under Gaussian priors. In each
case, the likelihood function is a strict conditioning, because observations are assumed to be noise-free. Because
numerical methods are active (they decide which computations to perform), they require a decision rule. This is often
“greedy”: evaluation under the posterior mean estimate. The exception is integration, which is the only area where the
estimated solution of the numerical task is not required to construct the next evaluation.
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General Recipe

(a) General Recipe for Probabilistic Numerical Algorithms

These recent results, identifying probabilistic formulations for classic numerical methods, highlight
a general structure. Consider the problem of approximating the intractable variable z, if the
algorithm has the ability to choose ‘inputs” @ = {z; }-1,... for computations that result in numbers
y(x) = {yi(x:) }i-1,.... A blueprint for the definition of probabilistic numerical methods requires
two main ingredients:

(i) A generative model p(z,y(x)) for all variables involved—that is, a joint probability measure
over the intractable quantity to be computed, and the tractable numerical quantities
computed in the process of the algorithm. Like all (sufficiently structured) probability
measures, this joint measure can be written as

p(z,y(x)) =p(2) p(y(2)|2), (3.1)

i.e. separated into a prior p(z) and a likelihood p(y(m)‘z), The prior encodes a hypothesis
class over solutions, and assigns a typically non-uniform measure over this class. The
likelihood explains how the collected tractable numbers y relate to z. It has the basic role
of describing the numerical task. Often, in classic numerical problems, the likelihood is a
deterministic conditioning rule, a point measure.

(ii) A design, action rule, or policy r, such that

Tip1= T(P(Zay(m)):ll:i~y1:i)~ (32)

encoding how the algorithm should collect numbers. (Here 2.; should be understood
as the actions taken in the preceding steps 1 to ¢, and similarly for y;.;). This rule can be

simple, for example it could be independent of collected data (regular grids for integration).

Or it might have a Markov-type property that the decision at i only depends on k<1
previous decisions (for example in ODE solvers). Sometimes, these rules can be shown to
be associated with the minimization of some empirical loss function, and thus be given a
decision-theoretic motivation. This is for example the case for regular grids in quadrature
rules [29].
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Integration

@ One of the first areas in probabilistic numerics

@ O’Hagan, Anthony. "Bayes-Hermite Quadrature” Journal of statistical
planning and inference 29.3 (1991): 245-260.

@ O’Hagan, Anthony. "Monte Carlo is fundamentally unsound.” The
Statistician (1987): 247-249.

@ Rasmussen, Carl Edward, and Zoubin Ghahramani. "Bayesian Monte
Carlo.” Advances in neural information processing systems (2003):
505-512.

@ Basically, rewrite I[f] = [ f(x)dx as a Bayesian problem
pUI{fi = f(xi) Yimy) o< p(filD)p(fi)
@ Not many theoretical guarantees; posterior shrinkage estimates in

@ Briol, Francois-Xavier, et al. "Probabilistic Integration: A Role for
Statisticians in Numerical Analysis?.” arXiv preprint arXiv:1512.00933
(2015).

@ Briol, Francois-Xavier, et al. "Frank-Wolfe Bayesian quadrature:
Probabilistic integration with theoretical guarantees.” Advances in Neural
Information Processing Systems. 2015.

@ Can help with adaptive sample selection

@ Shaw, J. E. H. "A quasirandom approach to integration in Bayesian

statistics.” The Annals of Statistics (1988): 895-914.
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Integration: a great read

The Statistician (1987) 36, pp. 247-249 247

Monte Carlo is fundamentally unsound

A. OHAGAN

Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K.

Abstract. We present some fundamental objections to the Monte Carlo method of numerical integra-
tion.

Two major objections:
@ Same sample set can lead to different integral values
@ No use of information of the sample set
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Integration: visual

Integrand

Posterior distribution

Figure 1: Sketch of Bayesian Quadrature. The top row shows the approximation of the integrand f
(in red) by the GP posterior mean m; (in blue) as the number n of function evaluations is increased.
The dashed lines represent 95% credible intervals. The bottom row shows the Gaussian distribution
with mean E[II[f]|D] and variance V[II[f]|D] that models our uncertainty over the solution of the
integral as n increases (the dashed black line gives the true value of the integral). When n = 0,
the approximation of the integral is fully specified by the GP prior. As the number of states n
increases, the approximation of f becomes more precise and the Gaussian posterior distribution

n=0

T T T

true integral

contracts onto the true value of the integral.
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Integration: I = fol f(x)dx

@ Put a prior on f(x)
@ Compute f(x;) fori=1,...,n
@ Compute the posterior via Bayes rule (first f then I)

@ Brownian motion prior = Posterior mean is piecewise linear
interpolation = Trapezoidal rule

@ Prior is k-th integral of Brownian motion = Posterior mean is
spline of order 2k 4+ 1 = Higher order integration rules
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Linear Alg./Optimization

Ax=0>b
@ The goal is to replace the point estimates returned by existing

methods with a Gaussian posterior belief over the elements of the
inverse of A, which can be used to estimate errors.

@ Put a Gaussian prior on H = A~!, then estimate the posterior
action rule x;;1 = x; — aH;(Ax; — b) induced by posterior of H;.

@ Hennig, Philipp. "Probabilistic interpretation of linear solvers.”
SIAM Journal on Optimization 25.1 (2015): 234-260.

@ Relation to Bayesian optimization

e This is not simply max posterior
e To find the next candidate point, a posterior of utility function is
evaluated.
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Differential equations

... €. IVP ODEs % = f(x,1)

@ Runge-Kutta (RK): linear extrapolation rule

@ Repeatedly construct “estimates” of x; ~ x(z;) which is then used
to collect an “observation” y; = f(%;, t;), .t % = xo + >_;; Wiy
@ Relation to Bayesian integration

@ Barber, David. "On solving Ordinary Differential Equations using
Gaussian Processes.” arXiv preprint arXiv:1408.3807 (2014).
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Differential equations

PDE mesh discretization error

@ Conrad, Patrick R., et al. "Probability measures for numerical
solutions of differential equations.” arXiv preprint
arXiv:1506.04592 (2015).

@ Chkrebtii, Oksana A., et al. "Bayesian solution uncertainty
quantification for differential equations.” Bayesian Analysis 11.4
(2016): 1239-1267.
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Resilient solver [Shameless plug]

@ K. Sargsyan, et al. "Fault resilient domain decomposition
preconditioner for PDEs.” SIAM Journal on Scientific Computing
37.5 (2015): A2317-A2345.

@ F. Rizzi, et al. "Partial differential equations preconditioner resilient
to soft and hard faults.” Cluster Computing (CLUSTER), 2015
IEEE International Conference on. IEEE, 2015.

@ Probabilistic preconditioner, or a domain decomposition solver
@ PDE solution is taken as state-of-knowledge
@ Learn boundary-to-boundary maps to update the solution state

@ Targeting resilience: Bayesian inference allows optimal regression
in presence of outliers
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Rexsss: Resilient EXtreme Scale Scientific
Simulations

Local PDE samples X .
- Stage 5: regression, build

boundary maps

Stage 6: solve boundary
maps system

Stage 7: update state,
repeat loop
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