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Outline: model error quantification

@ Motivation

@ Current issues
@ Method

@ Toy demos

@ Applications

o Chemical reaction model
e Atmospheric transport

o LES computation
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Main target

Model error = deviation from ‘truth’, or from a higher-fidelity model

e Represent and estimate the error associated with
Simplifying assumptions, parameterizations
Mathematical formulation, theoretical framework
Numerical discretization

o ...will be useful for

Model validation

Model comparison

Scientific discovery and model improvement
Reliable computational predictions

e Inverse modeling context

Given experimental or higher-fidelity model data,
estimate the model error
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Motivation

e o Data, N=5

=1.0 -0.5 0.0 0.5 1.0
X

Model-data fit

@ Given noisy data — Gaussian noise

Qy= gLrue(x) +e
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Motivation

e o Data,N=5
1.0| — Predictive mean
[ Predictive stdev

=1.0 -0.5 0.0 0.5 1.0 05 06 07 08 09 10 11
A
X 1

Model-data fit Posterior on parameters
@ Employ Bayesian inference to fit an exponential model — y,, = f(x, A)

@ Discrepancy between data and prediction presumed exclusively due to
i.i.d. Gaussian data noise —y = f(x, \) + &

@ Plotted:

o Posterior density on the parameters
e Preditive mean and standard deviation
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Motivation

e o Data,N=5
1.0| — Predictive mean
[ Predictive stdev

- True function

=1.0 -0.5 0.0 0.5 1.0 05 06 0.7 (3\.8 09 10 1.1
X 1
Model-data fit Posterior on parameters

@ Employ Bayesian inference to fit an exponential model — y,, = f(x, A)

@ Discrepancy between data and prediction presumed exclusively due to
i.i.d. Gaussian data noise —y = f(x, ) + €q

@ True model g(x) — dashed-red — differs from fit model f(x, A)
@ Actual discrepancy includes both data and model errors
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Motivation

1 1.
e o Data, N =20
1.0| — Predictive mean
[ Predictive stdev 1.7
0.5t| === True function
- 1.4
> 0 b g - @
d 1.5
14 N=20
0.5 1.0 L9506 07 oA.s 09 1.0 1.1
Model-data fit Posterior on parameters

@ Increasing number of data points decreases posterior and predictive
uncertainty

@ We are increasingly sure about predictions based on the wrong model
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Motivation

1. 1

e « Data,N=50
1.0| — Predictive mean 5 °4

[ Predictive stdev ./ 17
0.54| ----  True function e

/ 1.4
14 N=50
1.0 L9506 07 oA.s 09 1.0 1.1
Model-data fit Posterior on parameters

@ Increasing number of data points decreases posterior and predictive
uncertainty

@ We are increasingly sure about predictions based on the wrong model
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Motivation

1 1.
+ « Data, N =50 / + « Data, N =50
1.0| — Predictive mean = 1.0| — Predictive mean
[ Predictive stdev ./ [ Predictive stdev
0.5/| == True function °/ 0.5 ==+ True function
> 0
-0.
—1.0--»
1.0 ~L5 =05 0.0 0.5 1.0
X
Model-data fit What we want

@ If the model has structural uncertainty, more data leads to biased and
overconfident results

@ We want to quantify model-vs-truth discrepancy in a rigorous and
systematic way

e Cannot ignore model error
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Explicit model discrepancy: issues for physical models

yi =f(xi; A) + 6(x;) +e
N ———

truth

Explicit additive statistical model for model error §(x) [kennedy-0'Hagan, 2001]

Potential violation of physical constraints

Disambiguation of model error §(x;) and data error ¢;

Calibration of model error on measured observable does not impact
the quality of model predictions on other Qols

Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs

e Calibrated predictive model:  f(x; A) + d(x) or f(x; A) ?

Problem is highlighted in model-to-model calibration (¢; = 0)
e no a priori knowledge of the statistical structure of 4 (x)
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Model error embedding: key idea

Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

@ Cast input parameters \ as a random variable A

Black-box i =f(xi; A) + €

@ Generalize parameter forms,

Random field yi = f(xi; A(x:)) + €

@ More generally, explore additional parameterizations,

Extra ‘physics’ yi =f(xi; A, 0) + €
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Model error embedding: key idea

Cast input parameters )\ as a random variable A
yi=f(xi3A) +6(x) +& ——— yi=f(xi;A) + ¢

¢ Embed model error in specific submodel phenomenology

a modified transport or constitutive law
a modified formulation for a material property

o Allows placement of model error term in locations where key
modeling assumptions and approximations are made

as a correction or high-order term
as a possible alternate phenomenology

o Naturally preserves model structure and physical constraints
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Model error embedding — Bayesian density estimation

yi =flxi; A) + €
@ Parametrize embedded random variable A:
o PDF form ma(-; @)
e Polynomial Chaos (PC): A = >, oW (€)

o Multivariate Normal (MVN):
Ay = aj +ané

Ay = ano + anéy + anés

Ag = oo + agiéi + 0o + - + aéa

@ Inverse modeling context
o Parameter estimation of A\ = PDF estimation of A =
= parameter estimation of «

o Bayesian formulation plaly) < Ly(a) p(a)
——— ~——
Posterior Likelihood Prior
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Model error embedding — likelihood options

Model

. Likelihood

Posterior p(aly)

Prob. model for A

@ Infer & = (o, 0p)
@ Data generation model; to aid likelihood p(y|&) construction
yi = faA)+ea=

= f(xi,Zak\Pk(&,---,ﬁd)> + oplayi =

[NISP] ka YUi(&rs- .., &) + opari = hi(€; Q)

Q

@ FullPCgerm € = (&1,.. ., & Easty - Easn)
N—_—— —,—,——

Model error Data noise
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Model error embedding — likelihood options

@ Data generation model; to aid likelihood p(y|a) construction

yio = fli,A)+e=
= f (Xi,zak‘lfk(&,-wfd)> + op8ati =

Zﬁ YWk(1,- - &a) + onlasi

%

[NISP]

@ Full Likelihood: L(a) = p(y|a) = p(y1, - - ., yn|e) = 7 (y)

o Degenerate if no data noise
e Requires multivariate KDE or high-d integration
o Gaussian approximation:

L(a) oc exp (=3 (v = u(@)"S7 () (v = p(a)))

o Non-intrusive spectral projection (NISP) relieves the expense and
provides easy access to mean p(«) and covariance X(«)
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Model error embedding — likelihood options

@ Data generation model; to aid likelihood p(y|a) construction
yi = fl,A)+e=
= f (xivzakqjk(fla e @d)) + op8ati =

[NISP] Zﬁ YWi(r, -5 €a) + oDEati

%

@ Marginalized Likelihood:
L(a) = pyla) = TTIL, pila) =TT, 7()
o Requires univariate KDE
@ Neglects built-in correlations
o Gaussian approximation:

L() ocexp (=3 X, 25 (@) 01— u(@))?)
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Model error embedding — likelihood options

@ Data generation model; to aid likelihood p(y|a) construction
yi = fl,A)+e=
= f (xivzakqjk(fla e @d)) + op8ati =

[NISP] Zﬁ YWi(r, -5 €a) + oDEati

%

@ Approximate Bayesian Computation (ABC): L(a) = 1k (M)
@ Mean of f(x;; A) is “centered” on the data

@ The width of the distribution of f(x;; A) is consistent with the spread of the
data around the nominal model prediction

L(a) 0<exp< 222[#1 —y)" + (VZi(a) = 7lpi(a yzl)2]>
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Model Error — Predictions

FO5A) =163 anPi(§1:a) = D i filx; ) Vi (€1:a)

@ Non-intrusive spectral projection (NISP) will allow
o Posterior/pushed-forward predictions

e Easy access to first two moments:

px; ) = folx; @), *(xa) = filxa)| L’

k>0

@ Predictive mean Ely(x)] = Eq[p(x; )]

@ Decomposition of predictive variance

Vb}(x)] = Ea[oz(x; a)] +Va[“(x§ a)]

Model error Posterior error
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Model Error — Predictions at data locations

flis A) = f (x5 2ok axVr(&1:a)) + 0Diva = D i fu(xis ) Ui (&1:a) + 0DEita

@ Non-intrusive spectral projection (NISP) will allow
o Likelihood computation

e Easy access to first two moments:

p(xis @) = fol(xi; ), (i) = > £ 0)|[ T

k>0

@ Predictive mean E[y(x)] = Ealu(x; )]

@ Decomposition of predictive variance

Vly(xi)] = Ealo® (xi; @)] + Valp(xi; a)] + 0

Model error Posterior/Data error
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~

Linear-exponential f(x, \) = e +32¥ Additive Gaussian error
® e Data from truth
LY Data.fr.om truth — Predictive mean
—_ Pred!ct!ve mean o 3 [ Predictive stdev
10° [ Predictive stdev 10
N
.
\\\.
.
10" .
-1 . \,
10 N,
N
AN
\\
0 1 2 3 4
0 1 2 3 4 5
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e=03% 4 ¢~

Linear-exponential f(x, \) = e*t22*

10°f

10"

e ¢ Data from truth
— Predictive mean
[ Predictive stdev

K. Sargsyan (ksargsy@sandia.gov)
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10°
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More data leads to ‘leftover’ model error

Calibrating a quadratic f(x) = Ao + Aix 4+ Aox’
w.rt. ‘truth’ g(x) = 6 + x> — 0.5(x + 1)** measured with noise o = 0.1.

N =20

N = 1000

Summary of features:

line
.-

quad
ceeree

@ Well-defined model-to-model calibration
@ Model-driven discrepancy correlations

“-e..., cube

Variance
"

@ Respects physical constraints e
@ Disambiguates model and data errors 10 |2 Sodel ervor
4 || ®-= Data noise T
; i i ; 10 .
@ Calibrated predictions of multiple Qols D T

Number of Samples
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Scenarios of interest

o Model-to-model calibration
Chemical reaction model

e Multi-model analysis
Atmospheric transport

e Prediction of other Qols
LES computation
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Model-to-model calibration: ignition model

@ Homogeneous ignition, methane-air mixture
@ Single-step global reaction model calibrated against a detailed
chemical kinetic model

@ Data: ignition time; range of :E
initial T & equivalence ratio £
@ Single-step model: 25
CH, + 20, — CO, + 2H,0 .8

R = [CHy][O:]ks

kf — A eXp(*E/R() T) 1000 4450

.
1100 1350 08

emp_, ];zuu 1250 4390 06 ((,0“

@ (InA,E) = >, ax Uy (€)
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Model-to-model calibration: ignition model

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (7°, ®):

@ MAP predictive mean
ignition-time is centered
on the data

@ MAP predictive stdv
is consistent with the
scatter of the data

Log (Ignition time), Inr

K. Sargsyan, H.N. Najm, and R. Ghanem
"On the Statistical Calibration of Physical Models”
Int. J. Chem. Kin., 47(4): 246-276, 2015
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TransCom3 Experiment of CO, Flux Inversion

[Gurney et al., Tellus B, 2003]

e Observations d at N = 77 sites around the world
e Inverse problem: find fluxes s at M = 22 locations
e Linearized ‘response’ model R, such that d ~ Rs

d:RS+€d

Model R is never perfect thus contaminating the inversion
The inferred values of s compensate for model deficiencies

€4 is meant to capture data errors, but is ‘entangled’ with
model errors
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Consider 14 different response models R

GISS.prather . .prather3 JMA-CDTM.maki
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Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+¢
e Embed probabilistic model for fluxes s: d = R(us + Cs§)
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Consider 14 different response models R

MATCH.law
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Infer fluxes s, given measurements d to satisfy d ~ Rs

e Conventional additive Gaussian error (least-squares): d=Rs+¢
e Embed probabilistic model for fluxes s: d = R(us + Cs§)
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Inferred fluxes show less variability across models

Region Ind09
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Inferred fluxes show less variability across models
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Region ocn04
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LES computation in Scramjet engine: static-vs-dynamic SGS model calibration
Calibrate with Turbulent Kinetic Energy (TKE) data, predict both TKE and Pressure

TKE

Pressure

0.00 -0.024
* * Data from high-fid model % * Data from high-fid model
® @ Pred. mean of low-fid model ~0.02 ® o Pred. mean of low-fid model
0.005f BN Pred. st.dev. due to posterior B EEE Pred. st.dev. due to posterior
—0.02
0.004
®
" £-0.03
% 0.003 @
£ -0.032
0.003 No model error
-0.034
0.001 —0.03
I A
0.0005 =z =3 =2 =T —0.0385 =7 =3 =3 =T
y-position y-position
0.00 ~0.02
« * Data from high-fid model % * Data from high-fid model
0.008 © o Pred. mean of low-fid model ~0.024 © o Pred. mean of low-fid model
3 3 Pred. st.dev. due to model error [ Pred. st.dev. due to model error
B Pred. st.dev. due to posterior _0.02 I == e o du posterior
0.005f * *N
~0.02
1 0:004 £ ot
¥ 2-0.030f*-*
0.003 £
With model "o ! V
Ith m rror i
0.002 odel erro o0sd With model error
0.001 -0.03
O P A
00005 =z =3 =2 =T —0.0385 =7 =3 = =
y-position y-position
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Challenges and Mitigation

e Density estimation is more challenging than parameter estimation
¢ Inverse problem is ill-posed or intractable
= Employ approximate or empirical likelihoods

e Potentially a high-dimensional Bayesian problem
e Full posterior may be inaccessible...
= Resort to optimization algorithms in no-noise case
e ... or hard to sample from
= Adaptive MCMC algorithms, Likelihood-informed
subspaces

e Sparse data or expensive high-fidelity simulations

e With low information content, calibration may struggle
= More informative priors/regularization
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Summary and Future Thank You

Represent, quantify and propagate physical model errors
Parameter estimation = density estimation

Bayesian machinery to find parameters of the PDFs
Approximate/empirical likelihoods impose constraints of interest
Differentiates from data noise; allows model-to-model calibration
Implemented in UQTk (www.sandia.gov/UQToolkit)

K. Sargsyan, H. Najm, and R. Ghanem. “On the Statistical
Calibration of Physical Models”. International Journal for Chemical
Kinetics, 47(4): 246-276, 2015.

Optimal design for maximum information
Bayesian problem still hard; MCMC, priors, ...

Hierarchical Bayesian viewpoint

More intrusive embedding; problem specific
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Additional Material



Likelihood construction — variants

@ Full Likelihood

L(a) = p(D|a) = p(Ydata,15 - - - » Ydaa,N|)
@ Marginalized Likelihood

N
L(e) = p(D|er) = [ [ pOatail )

i=1

@ Approximate Bayesian Computation (ABC)
— seek to satisfy the constraints:
e p(y|D) is “centered” on the data
e The width of the distribution p(y|D) is “consistent” with the spread of
the data around the nominal model prediction



Full Likelihood

L(a) = p(D‘O‘) = 7Tf(ydata,la ce 7ydata,N’a)
where:
(-, «): N-variate density of the random variable (fi, ..., fv)

with f; = f(x;, AM(«))
Problem: 7¢(-) is degenerate in general when N > M

Consider a case with M = 1, A ~ N(p,02), and f = \x
Let N = 2, hence (fi,f2) = (Ax1, Axp) for any A sample
With £ /x1 = f2/x2 = A, (f1,/2) are dependent and

7r(-|ie, o) is non-zero only along the line f> = (x2/x1)fi

hence 7 (ydata,1, Ydata 2| 14, 0) iS NON-zero only along the line
ydata,Z/XZ = ydata7l/x1



Marginalized Likelihood

L(a) = p(Dla) = wa (Vawasle)

where (-, a) is the univariate density of the RV f; = f(x;, A(«))

Problem: the likelihood has multiple singularities corresponding to «
values leading to vanishing marginal variances at each x;

Gaussian example: Let f; ~ N(u;(a), oi(a)?), then

L ﬂ ex l(a) - ydata,i)2
N/2 P oi(a P 20i(a)?

Multiple singularities, o;(a) =0,i=1,...,N

Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest (= priors)



Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:
@ Uncertain prediction p(y|D) is centered on the data
o With p;(a) = Ee[f (xi, A(§;a))]:  minimize ||p;(c) — Yaua,il|3

@ The width of the distribution p(y|D) is consistent with the spread of
the data around the nominal model prediction
o With ai(a)? = Velf (xi, (€, a))]:
minimize [|(o;(a) — Y|pi(@) = Yaail) 13
@ ~ is a factor that specifies the desired match between o; and the
discrepancy |pu;() — Yaaw i, ON average



ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel function as

an ABC likelihood: | s
Lasc(a) = -K <P( ))

€

where e controls the severity of the consistency control

Propose the Gaussian kernel density:

(@) = ya)* + (oi(a) = ylpi(e) — yd,i!)2>

N
1
L (o) = ex
= =11 o -



