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Outline: model error quantification
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Main target

Model error = deviation from ‘truth’, or from a higher-fidelity model

• Represent and estimate the error associated with
• Simplifying assumptions, parameterizations
• Mathematical formulation, theoretical framework
• Numerical discretization

• ...will be useful for
• Model validation
• Model comparison
• Scientific discovery and model improvement
• Reliable computational predictions

• Inverse modeling context
• Given experimental or higher-fidelity model data,

estimate the model error
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Motivation
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Model-data fit

Given noisy data – Gaussian noise

y = gtrue(x) + ε
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Employ Bayesian inference to fit an exponential model – ym = f (x, λ)

Discrepancy between data and prediction presumed exclusively due to
i.i.d. Gaussian data noise – y = f (x, λ) + εd

True model g(x) – dashed-red – differs from fit model f (x, λ)

Actual discrepancy includes both data and model errors
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Motivation
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Increasing number of data points decreases posterior and predictive
uncertainty

We are increasingly sure about predictions based on the wrong model
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Model-data fit What we want

If the model has structural uncertainty, more data leads to biased and
overconfident results

We want to quantify model-vs-truth discrepancy in a rigorous and
systematic way

Cannot ignore model error
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Explicit model discrepancy: issues for physical models

yi = f (xi;λ) + δ(xi)︸ ︷︷ ︸
truth

+εi

• Explicit additive statistical model for model error δ(x) [Kennedy-O’Hagan, 2001]

• Potential violation of physical constraints

• Disambiguation of model error δ(xi) and data error εi

• Calibration of model error on measured observable does not impact
the quality of model predictions on other QoIs

• Physical scientists are unlikely to augment their model with a
statistical model error term on select outputs
• Calibrated predictive model: f (x;λ) + δ(x) or f (x;λ) ?

• Problem is highlighted in model-to-model calibration (εi = 0)
• no a priori knowledge of the statistical structure of δ(x)
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Model error embedding: key idea

Ideally, modelers want predictive errorbars:
inserting randomness on the outputs has issues, so...

Cast input parameters λ as a random variable Λ

Black-box yi = f (xi; Λ) + εi

Generalize parameter forms,

Random field yi = f (xi; Λ(xi)) + εi

More generally, explore additional parameterizations,

Extra ‘physics’ yi = f̃ (xi;λ,Θ) + εi
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Model error embedding: key idea

Cast input parameters λ as a random variable Λ

yi = f (xi;λ) + δ(xi) + εi −−−−−−−−−→a yi = f (xi; Λ) + εi

• Embed model error in specific submodel phenomenology
• a modified transport or constitutive law
• a modified formulation for a material property

• Allows placement of model error term in locations where key
modeling assumptions and approximations are made
• as a correction or high-order term
• as a possible alternate phenomenology

• Naturally preserves model structure and physical constraints
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Model error embedding – Bayesian density estimation
yi = f (xi; Λ) + εi

Parametrize embedded random variable Λ:
PDF form πΛ(·;α)

Polynomial Chaos (PC): Λ =
∑

k αkΨk(ξ)

Multivariate Normal (MVN):
Λ1 = α10 + α11ξ1

Λ2 = α20 + α21ξ1 + α22ξ2

...
Λd = αd0 + αd1ξ1 + αd2ξ2 + · · ·+ αddξd

Inverse modeling context
Parameter estimation of λ⇒ PDF estimation of Λ⇒
⇒ parameter estimation of α

Bayesian formulation p(α|y)︸ ︷︷ ︸
Posterior

∝ Ly(α)︸ ︷︷ ︸
Likelihood

p(α)︸︷︷︸
Prior
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Model error embedding – likelihood options

α

Prior p(α)

Prob. model for Λ

Λ
πΛ(·;α)

f (xi; Λ)

Model

Likelihood
p(y|α)

yi = f (xi; Λ) + εi

Data

Posterior p(α|y)

Infer α̂ = (α, σD)

Data generation model; to aid likelihood p(y|α̂) construction

yi = f (xi,Λ) + εi =

= f

(
xi,
∑

k

αkΨk(ξ1, . . . , ξd)

)
+ σDξd+i =

[NISP] ≈
∑

k

fik(α)Ψk(ξ1, . . . , ξd) + σDξd+i = hi(ξ̂; α̂)

Full PC germ ξ̂ = (ξ1, . . . , ξd︸ ︷︷ ︸
Model error

, ξd+1, . . . , ξd+N︸ ︷︷ ︸
Data noise

)
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Model error embedding – likelihood options

Data generation model; to aid likelihood p(y|α) construction

yi = f (xi,Λ) + εi =

= f

(
xi,
∑

k

αkΨk(ξ1, . . . , ξd)

)
+ σDξd+i =

[NISP] ≈
∑

k

fik(α)Ψk(ξ1, . . . , ξd) + σDξd+i

Full Likelihood: L(α) = p(y|α) = p(y1, . . . , yN |α) = π(y)

Degenerate if no data noise
Requires multivariate KDE or high-d integration
Gaussian approximation:
L(α) ∝ exp

(
− 1

2 (y− µ(α))TΣ−1(α)(y− µ(α))
)

Non-intrusive spectral projection (NISP) relieves the expense and
provides easy access to mean µ(α) and covariance Σ(α)
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Model error embedding – likelihood options

Data generation model; to aid likelihood p(y|α) construction

yi = f (xi,Λ) + εi =

= f

(
xi,
∑

k

αkΨk(ξ1, . . . , ξd)

)
+ σDξd+i =

[NISP] ≈
∑

k

fik(α)Ψk(ξ1, . . . , ξd) + σDξd+i

Marginalized Likelihood:
L(α) = p(y|α) ≈

∏N
i=1 p(yi|α) =

∏N
i=1 π(yi)

Requires univariate KDE
Neglects built-in correlations
Gaussian approximation:
L(α) ∝ exp

(
− 1

2

∑N
i=1 Σ−1

ii (α)(yi − µi(α))2
)
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Model error embedding – likelihood options

Data generation model; to aid likelihood p(y|α) construction

yi = f (xi,Λ) + εi =

= f

(
xi,
∑

k

αkΨk(ξ1, . . . , ξd)

)
+ σDξd+i =

[NISP] ≈
∑

k

fik(α)Ψk(ξ1, . . . , ξd) + σDξd+i

Approximate Bayesian Computation (ABC): L(α) = 1
εK
(
ρ(SM,SD)

ε

)
Mean of f (xi; Λ) is “centered” on the data

The width of the distribution of f (xi; Λ) is consistent with the spread of the
data around the nominal model prediction

L(α) ∝ exp

(
− 1

2ε2

N∑
i=1

[
(µi(α)− yi)

2 + (
√

Σii(α)− γ|µi(α)− yi|)2
])
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Model Error – Predictions

f (x; Λ) = f (x;
∑

k αkΨk(ξ1:d)) =
∑

k fk(x;α)Ψk(ξ1:d)

Non-intrusive spectral projection (NISP) will allow
Posterior/pushed-forward predictions

Easy access to first two moments:

µ(x;α) = f0(x;α), σ2(x;α) =
∑
k>0

f 2
k (x;α)||Ψk||2

Predictive mean
E[y(x)] = Eα[µ(x;α)]

Decomposition of predictive variance

V[y(x)] = Eα[σ2(x;α)]︸ ︷︷ ︸
Model error

+Vα[µ(x;α)]︸ ︷︷ ︸
Posterior error
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Model Error – Predictions at data locations

f (xi; Λ) = f (xi;
∑

k αkΨk(ξ1:d)) + σDξi+d =
∑

k fk(xi;α)Ψk(ξ1:d) + σDξi+d

Non-intrusive spectral projection (NISP) will allow
Likelihood computation

Easy access to first two moments:

µ(xi;α) = f0(xi;α), σ2(xi;α) =
∑
k>0

f 2
k (xi;α)||Ψk||2

Predictive mean
E[y(xi)] = Eα[µ(xi;α)]

Decomposition of predictive variance

V[y(xi)] = Eα[σ2(xi;α)]︸ ︷︷ ︸
Model error

+Vα[µ(xi;α)] + σ2
d︸ ︷︷ ︸

Posterior/Data error
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Predictions account for model error

Calibrating single-exponential models
with data from a double exponential model g(x) = e−0.5x + e−2x

Linear-exponential f (x, λ) = eλ1+λ2x
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Predictions account for model error

Calibrating single-exponential models
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More data leads to ‘leftover’ model error

Calibrating a quadratic f (x) = λ0 + λ1x + λ2x2

w.r.t. ‘truth’ g(x) = 6 + x2 − 0.5(x + 1)3.5 measured with noise σ = 0.1.

N = 20 N = 50 N = 1000
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Summary of features:

Well-defined model-to-model calibration
Model-driven discrepancy correlations
Respects physical constraints
Disambiguates model and data errors
Calibrated predictions of multiple QoIs
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Scenarios of interest

• Model-to-model calibration
• Chemical reaction model

• Multi-model analysis
• Atmospheric transport

• Prediction of other QoIs
• LES computation
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Model-to-model calibration: ignition model

Homogeneous ignition, methane-air mixture
Single-step global reaction model calibrated against a detailed
chemical kinetic model

Data: ignition time; range of
initial T & equivalence ratio
Single-step model:

CH4 + 2O2 → CO2 + 2H2O

R = [CH4][O2]kf

kf = A exp(−E/RoT)

(ln A,E) =
∑

k αkΨk(ξ)
Temp., T0
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Model-to-model calibration: ignition model

Calibrated uncertain fit model
is consistent with the
detailed-model data.

Over the range of (T0,Φ):
MAP predictive mean
ignition-time is centered
on the data
MAP predictive stdv
is consistent with the
scatter of the data

K. Sargsyan, H.N. Najm, and R. Ghanem
”On the Statistical Calibration of Physical Models”

Int. J. Chem. Kin., 47(4): 246-276, 2015
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TransCom3 Experiment of CO2 Flux Inversion
[Gurney et al., Tellus B, 2003]

• Observations d at N = 77 sites around the world

• Inverse problem: find fluxes s at M = 22 locations

• Linearized ‘response’ model R, such that d ≈ Rs

d = Rs + εd

• Model R is never perfect thus contaminating the inversion

• The inferred values of s compensate for model deficiencies

• εd is meant to capture data errors, but is ‘entangled’ with
model errors
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Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s: d = R(µs + Csξ)
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Consider 14 different response models R
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Infer fluxes s, given measurements d to satisfy d ≈ Rs

• Conventional additive Gaussian error (least-squares): d = Rs + ξ

• Embed probabilistic model for fluxes s: d = R(µs + Csξ)
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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Inferred fluxes show less variability across models
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LES computation in Scramjet engine: static-vs-dynamic SGS model calibration
Calibrate with Turbulent Kinetic Energy (TKE) data, predict both TKE and Pressure

TKE
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Challenges and Mitigation

• Density estimation is more challenging than parameter estimation
• Inverse problem is ill-posed or intractable
⇒ Employ approximate or empirical likelihoods

• Potentially a high-dimensional Bayesian problem
• Full posterior may be inaccessible...
⇒ Resort to optimization algorithms in no-noise case
• ... or hard to sample from
⇒ Adaptive MCMC algorithms, Likelihood-informed

subspaces

• Sparse data or expensive high-fidelity simulations
• With low information content, calibration may struggle
⇒ More informative priors/regularization
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Summary and Future Thank You

Represent, quantify and propagate physical model errors
Parameter estimation⇒ density estimation
Bayesian machinery to find parameters of the PDFs
Approximate/empirical likelihoods impose constraints of interest
Differentiates from data noise; allows model-to-model calibration
Implemented in UQTk (www.sandia.gov/UQToolkit)

• K. Sargsyan, H. Najm, and R. Ghanem. “On the Statistical
Calibration of Physical Models”. International Journal for Chemical
Kinetics, 47(4): 246-276, 2015.

Optimal design for maximum information

Bayesian problem still hard; MCMC, priors, ...

Hierarchical Bayesian viewpoint

More intrusive embedding; problem specific
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Additional Material



Likelihood construction – variants

Full Likelihood

L(α) = p(D|α) = p(ydata,1, . . . , ydata,N |α)

Marginalized Likelihood

L(α) = p(D|α) =

N∏
i=1

p(ydata,i|α)

Approximate Bayesian Computation (ABC)
– seek to satisfy the constraints:

p(y|D) is “centered” on the data
The width of the distribution p(y|D) is “consistent” with the spread of
the data around the nominal model prediction



Full Likelihood

L(α) = p(D|α) = πf (ydata,1, . . . , ydata,N |α)

where:
πf (·, α): N-variate density of the random variable (f1, . . . , fN)
with fi = f (xi, λ(α))

Problem: πf (·) is degenerate in general when N > M

Consider a case with M = 1, λ ∼ N(µ, σ2), and f = λx
Let N = 2, hence (f1, f2) = (λx1, λx2) for any λ sample
With f1/x1 = f2/x2 = λ, (f1, f2) are dependent and
πf (·|µ, σ) is non-zero only along the line f2 = (x2/x1)f1

hence πf (ydata,1, ydata,2|µ, σ) is non-zero only along the line
ydata,2/x2 = ydata,1/x1



Marginalized Likelihood

L(α) = p(D|α) =

N∏
i=1

πfi(ydata,i|α)

where πfi(·, α) is the univariate density of the RV fi = f (xi, λ(α))

Problem: the likelihood has multiple singularities corresponding to α
values leading to vanishing marginal variances at each xi

Gaussian example: Let fi ∼ N(µi(α), σi(α)2), then

L(α) =
1

(2π)N/2

N∏
i=1

1
σi(α)

exp

(
(µi(α)− ydata,i)

2

2σi(α)2

)
Multiple singularities, σi(α) = 0, i = 1, . . . ,N

Posterior maximization always finds one of these singularities, fitting
one point perfectly, while misfitting the rest (⇒ priors)



Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce select
constraints:

Uncertain prediction p(y|D) is centered on the data
With µi(α) = Eξ[f (xi, λ(ξ;α))]: minimize ‖µi(α)− ydata,i‖2

2

The width of the distribution p(y|D) is consistent with the spread of
the data around the nominal model prediction

With σi(α)2 = Vξ[f (xi, λ(ξ, α))]:
minimize ‖(σi(α)− γ|µi(α)− ydata,i|)‖2

2
γ is a factor that specifies the desired match between σi and the
discrepancy |µi(α)− ydata,i|, on average



ABC Likelihood

With ρ(S) being a metric of the statistic S, use the kernel function as
an ABC likelihood:

LABC(α) =
1
ε

K
(
ρ(S)

ε

)
where ε controls the severity of the consistency control

Propose the Gaussian kernel density:

Lε(α) =
1

ε
√

2π

N∏
i=1

exp

(
−

(µi(α)− yd,i)
2 + (σi(α)− γ|µi(α)− yd,i|)2

2ε2

)


