

Parametric Uncertainty Quantification Workflow for ALM

TLAI

TOTSOMC

K. Sargsyan (SNL), D. Ricciuto, P. Thornton (ORNL)

Objective

Multi-site, Multi-output Uncertainty Analysis

- Decompose output uncertainties into fractional input contributions
- Vary 68 input parameters simultaneously over selected ranges
- Perform global sensitivity analysis for 96 sites and 5 steady state outputs

Create a Forward UQ Workflow for ACME v1.0

- Analyze ALM outputs with UQTk v2.2 and Python scripts to interface
- Full workflow is non-intrusive, i.e. model runs as a black-box

Major Challenges

- Large number of parameters / curse of dimensionality
- Expensive simulations / scarce information
- Input parameter dependencies
- Non-linear input-output maps

Approach

Rosenblatt Transformation:

- Create dependent input configurations
- High-D generalization of CDF transform
- Probability-preserving map

Polynomial Chaos Surrogate:

- Cast input/outputs as random variables
- Flexible representation for both forward and inverse UQ

Bayesian Approach:

- Uses any number of model simulations
- Provides an uncertain surrogate with quantified error

Weighted Sparse Basis Initial Basis Final Basis Iterations Growth New Basis

 $y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$

 $P(c_k|u(\mathbf{x}_j)) \propto P(u(\mathbf{x}_j)|c_k) P(c_k)$

 $\Psi_k(x_1, x_2, ..., x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2)\cdots\psi_{k_d}(x_d)$

Weighted Iterative Bayesian **Compressive Sensing:**

 Iterative search for most relevant polynomial bases

Variance-based Decomposition:

 Sobol sensitivities attribute output uncertainties to input parameters

Impact

Parameter Ranking:

 Provides an efficient parameter ranking by their impact to each output Qol across multiple sites

GPP

TOTVEGC

The results indicate some site-to-site variability

Multisite sensitivities help extract the most impactful inputs

Overall coherence of sensitivities across sites covering different climates and PFTs

Dimensionality Reduction:

 Large number of input parameters can be reduced to about 10 without much loss of information

Key Parameters:

- Leaf and fine root nitrogen
- Fine root allocation
- Leaf longevity, denitrification
- Autotrophic respiration
- Stomatal conductance

Model Surrogate for Multirun Studies:

- Calibration and optimization can proceed using the uncertain model surrogate
- More accurate surrogate in lower-dimensional parameter space

Automated Forward UQ Workflow as a part of ACME v1.0

For additional information, contact: Khachik Sargsyan

Sandia National Laboratories, Livermore, CA (925) 294-4885 ksargsy@sandia.gov

climatemodeling.science.energy.gov/acme

