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Uncertainties in Climate Modeling

e Uncertainty sources

e Parameter uncertainty

o Model parameters
« Initial/boundary conditions
o Model geometry/structure

Model/structural uncertainty

e Unknown physics
o Reduced order models

Scenario uncertainty

o Policy restrictions
e Technology improvement

Intrinsic variability
o Stochastic physics
Numerical errors
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Uncertainties in Climate Modeling

e Uncertainty sources

e Parameter uncertainty

o Model parameters
« Initial/boundary conditions
« Model geometry/structure e Need UQ for...

Model/structural uncertainty Model validation

o Unknown physics Confidence
o Reduced order models assgssment.
Scenario uncertainty Optimal design
. L Data assimilation
o Policy restrictions
e Technology improvement

Intrinsic variability
o Stochastic physics
Numerical errors
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UQ components and methods

Computer
Model

Input Output
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UQ components and methods

Spectral Methods

—

Computer
I Output
nput Model Hipu

e Sensitivity analysis

e Small parameter perturbations
o Predictability assessment

e Larger parameter uncertainties
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UQ components and methods

Spectral Methods
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Bayesian Framework

e Sensitivity analysis

e Small parameter perturbations
o Predictability assessment

e Larger parameter uncertainties
e Parameter estimation/calibration

e Inverse problems
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UQ components and methods

Spectral Methods

—

Computer
I Output
nput Model Hipu

\/

Bayesian Framework

e Forward UQ methods

e Direct (intrusive)

- Derive new forward model
- Intrusive Spectral Projection (ISP)

e Sampling (non-intrusive)

- Monte-Carlo, Quasi Monte-Carlo
- Non-intrusive Spectral Projection (NISP)
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Non-Intrusive Spectral Projection (NISP)

e Polynomial Chaos expansions for input v and output Z

YR WIE)
k

Z=f(y) =D AW
k

e Orthogonal projection via quadrature to obtain PC modes

fi= / FO)T©pAf(€)dE ~ 3 (€ w*
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Challenges tackled in more detail today

e non-linearities/bifurcations
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Non-Intrusive Spectral Projection (NISP)

e Polynomial Chaos expansions for input v and output Z

v wIE)
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Z=f(y) =D AW
k

e Orthogonal projection via quadrature to obtain PC modes

fi= / FO)T©pAf(€)dE ~ 3 (€ w*

Challenges tackled in more detail today

e non-linearities/bifurcations
¢ low-probability/high-impact events
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UQ methods are challenged by..

e Nonlinearities,
Bifurcations,
Bimodalities

e Tail regions

o Limited data

e Intrinsic stochasticity

e Curse of dimensionality
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Switching gear...

UQ Challenges

e non-linearities/bifurcations

e low-probability/high-impact events
e limited data

e intrinsic stochasticity

e high dimensionality
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Discontinuities/Nonlinearities/Bifurcations

e Stochastic domain decomposition

o Wiener-Haar Expansions,
Multiwavelets [Le Maitre et al, 2004,2007]

o Multielement PC [wan & Karniadakis, 2009]

Data domain decomposition [Sargsyan et a/, 2009,2010]
» Data clustering
e Mixture PC expansions

Adaptive setting
Does not scale with dimensionality
For expensive models, can not split much

Need a ‘smart’ domain decomposition
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

e Computational model - EMIC

e Input parameters

e Rate of CO, increase (r)

e Climate sensitivity (\)
e Output observable

e Overturning
streamfunction (Z)
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Global representations fail to capture discontinuities

Thermohaline Circulation

e Computational model - EMIC

e Input parameters

e Rate of CO, increase (r)
e Climate sensitivity (\)

e Output observable
e Overturning
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UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be
subdivided into regions with smooth model response where spectral
uncertainty quantification methods can be used.

Two-step approach:

o Bayesian inference of the location of the discontinuity

e Polynomial chaos representation via parameter domain
mapping at each side of the discontinuity
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Bayesian Inference of the Location of Discontinuity

o Parameterize the discontinuity: r ~ pe(\) = S5, cxPe(N)

e Approximation model:

1 + tanh (a(r — pe(N)))
2

Me =g\ r) =mp + (mg —myg)

¢ Noise model postulated: (), r)

o Likelihood function:
N )2
log P(D|M¢) Zlog (zilMe)) Z

i=1
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Bayesian Inference of the Location of Discontinuity

e Parameterize the discontinuity: r ~ pe(\) = S5, cxPi(N)

e Bayes’ formula: P(M|D) = %

mL discontinuity
sampled by MCMC
0.5
O,
o, P P
(’-l 0.5 0 0.5 1

Input parameter
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Highlights

e Any distribution of input points R S

e Generalizes to multiple dimensions

e Probabilistic representation I
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Discontinuity curve samples and their pdf
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Parameter Domain Mapping

@ Assume linear discontinuity

@ Use Rosenblatt
Transformation (RT) to map
the pair of uncertain
parameters (\,r) to i.i.d.
uniform random variables 7,
and n:

A= Fyl(m),
ro= F\(mlm)

o2 = [l = = o2 =

L L L L1 o) - IR ..
02 04 06 08 1 0 02 04 06 08 1
Ny Ny

@ Apply the RT mapping to both
sides of the discontinuity

ROSENBLATT TRANSFORMATION: (X, r) — (11, m2)
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Discontinuous data represented well with the averaged PC

PCE IN (17, 72) DOMAIN OutpuT PDF

Computational Model

8 PC Expansion
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Discontinuous data represented

well with the averaged PC.
9 Resulting output PDF given input

parameter joint PDF.
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¢ A methodology for uncertainty quantification in climate models
with limited data and discontinuities was proposed:

e Bayesian approach to detect and parameterize the
discontinuity as well as the uncertainty associated with it.

¢ Rosenblatt transformation maps each of the irregular
domains to rectangular ones where the application of the
local spectral methods of uncertainty propagation is feasible.

e “Knowledge Discovery from Climate Data: Prediction, Extremes,
and Impacts” Workshop Proceedings - 9th IEEE International
Conference on Data Mining, 2009.

e Full paper in preparation.
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Switching gear...

UQ Challenges

e non-linearities/bifurcations

e low-probability/high-impact events
e limited data

e intrinsic stochasticity

e high dimensionality
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Dealing with ‘fat’ tails

e Several climate observables ( e.g. climate sensitivity ) exhibit
heavy tails

e require a significant number of simulations to obtain a good
sampling of these regions

e Construct spectral expansions based on...
¢ Non-classical bases that cluster points in the tail region
o Bases tailored to the expected behavior of the output
e Use spectral expansions for...
e Propagating distributions from input parameters to output
observables
e Surrogate models to accelerate the inference process in
inverse problems
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Pointwise error is large at low-probability regions

Z=10) % SR = fi = [ FOVT(OAENE ~ YA (€D
k *
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Non-classical quadrature points span the tails better

Z=10) % SR = fi = [ FOVT(OAENE ~ YA (€D
k *
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Build a custom PC based on input distribution

e Classical PCEs for input v and output Z
e ¢is normal, W.(-) are Hermite - standard!

R %I
k

AIOEDYANE)
k
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Build a custom PC based on input distribution

e Classical PCEs for input v and output Z
e ¢is normal, W.(-) are Hermite - standard!

yR Y ()
k

AIOEDYANE)
k

e Customized PCE for output Z with respect to input distribution:
o v is any, ®,(-) are found by orthogonalization.

=7 (as ‘optimal’ as it gets)

Z=f(v)~ Z fie®i(7y) (hopefully, near optimal)
k
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Custom PC Expansions show much better

convergence than standard PCE

Input v belongs to Roe-Baker climate sensitivity distribution.
Synthetic forward model: f(v) = cos(y)

Unif-L
10"
Gauss-H
10°F
= 5[
E 10
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Y
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Switching gear...

UQ Challenges

e non-linearities/bifurcations

e low-probability/high-impact events
e limited data

e intrinsic stochasticity

e high dimensionality
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Limited Data

Both observational experiments and computer model simulations
are expensive.

e Need to infer functional representation based on limited number
of model runs/experiments.

e Interpolation (kriging)

e Gaussian Process emulation to assess
the lack-of-knowledge [0'Hagan]

e Extended to stochastic model setting

Output Quantity
A -

-

05 0
Input Parameter

e Bayesian experimental design
e What are the best locations to take observations?
e At which parameter sets to run climate models to gain
maximal information?
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Intrinsic stochasticity

e Stochastic computer models
e Probabilistic representation of the lack-of-knowledge
e Climate buzzword: Stochastic Physics [Paimer & Williams, 2009]

e See previous talk
(Bert Debusschere on Stochastic Reaction Networks)

e Extend Gaussian Process emulation of deterministic codes to the
stochastic case
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Intrinsic stochasticity

e Stochastic computer models
e Probabilistic representation of the lack-of-knowledge
e Climate buzzword: Stochastic Physics [Paimer & Williams, 2009]

e See previous talk
(Bert Debusschere on Stochastic Reaction Networks)

e Extend Gaussian Process emulation of deterministic codes to the
stochastic case

be Bayesian!!
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Switching gear...

UQ Challenges

e non-linearities/bifurcations

e low-probability/high-impact events
e limited data
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Curse of Dimensionality

o (Dimension-adaptive) Sparse quadrature integration
e High Dimensional Model Representation (HDMR)

e would not handle discontinuities
e tried cut-HDMR in a chemical kinetics context: fails!

e Proper Generalized Decomposition [Nuoy, 2010]

e Turn it into the blessing of dimensionality [Donoho, 2000]
e Compressive Sensing in spectral methods’ [Doostan et al, 2009]
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Curse of Dimensionality

(Dimension-adaptive) Sparse quadrature integration
High Dimensional Model Representation (HDMR)

e would not handle discontinuities
e tried cut-HDMR in a chemical kinetics context: fails!

Proper Generalized Decomposition [Nuoy, 2010]

Turn it into the blessing of dimensionality [Donoho, 2000]
Compressive Sensing in spectral methods’ [Doostan et al, 2009]

short answer: no free lunch
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¢ Nonlinearities, Bifurcations, Bimodalities
e Probabilistic detection of discontinuities followed by domain
mapping and polynomial chaos expansions to construct
model “surrogates”.

e Tail regions
e Employ spectral basis that cluster quadrature points in the
tail to construct surrogate models.
e Construct custom spectral basis based on “expected” shape
of the climate model output to improve convergence of the
spectral expansion.
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Current and future work

e Bring in real climate model data
e Still prohibitively many model runs required: possibly give up
orthogonal projection in favor of Bayesian inference
e Experimental design: inform climate modelers on the optimal
parameter sets to run simulations
e Gaussian process emulation
e Couple with PC, either
a) PC as the mean trend, or
b) uncertain integration via Bayes-Hermite quadrature.
e Patching PC expansions: capture both the mean and the tail
regions

e Climate Science for a Sustainable Energy Future (CSSEF)

e Multi-lab, multi-year project
e UQ needed for calibration, validation and prediction
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Inference of Discontinuity - 3" order polynomial

@ Synthetic discontinuous data
15F
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PC expansion, averaged over discontinuity curves

e PC expansion for each discontinuity curve sample:

P

Ze" () =Ze(mum) =Yz (1, m2)
p=0

e Model expansion depends on the parameter location:

ZE(\r) if (\,r) €Dy

zeur) = {zﬁ(A, P if(A\r)eDp’

e Average over all PC expansions via RT:

Z()\, r) :/p(c)Zc()\, r)dc:/ ZRfl(ﬁ)(A, r)dif
C [0,1]K+1



Custom Basis’ Quad Points Extend to the Tail

(pdf shape from Roe & Baker, Science 2007)
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Custom Basis’ Quad Points Extend to the Tail

(pdf shape from Roe & Baker, Science 2007)
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Accuracy of tail probabilities

P(f>a) = / pdf(v)dy
vf(v)>a

o Compare P(foue > a)
against P(fpc > a). 26

e Accuracy depends both on

L4 Vexact _fPC‘- ZS1s

e how accurate are the
the regions where
f>a.




Test probability errors

@ Forward model:
f(7) =exp(0.57 — 1)
e ~vis atruncated

log-normal

@ PC expansions:
e Legendre polynomials
e Hermite polynomials
e Custom basis

(truncated 1574 © Model
| | —PC:Custom (9)
og-normal) —PC:HG (9)

5| —PC:LU (9)

10° 10



Test probability errors

Custom PC Hermite PC
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