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Uncertainties in Climate Modeling

• Uncertainty sources

• Parameter uncertainty

• Model parameters

• Initial/boundary conditions

• Model geometry/structure

• Model/structural uncertainty

• Unknown physics

• Reduced order models

• Scenario uncertainty

• Policy restrictions

• Technology improvement

• Intrinsic variability

• Stochastic physics

• Numerical errors
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• Model geometry/structure

• Model/structural uncertainty

• Unknown physics

• Reduced order models

• Scenario uncertainty

• Policy restrictions

• Technology improvement

• Intrinsic variability

• Stochastic physics

• Numerical errors

• Need UQ for...

• Model validation

• Confidence

assessment

• Optimal design

• Data assimilation
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UQ components and methods

Input Computer

Model
Output
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Input Computer

Model
Output

Spectral Methods

• Sensitivity analysis

• Small parameter perturbations

• Predictability assessment

• Larger parameter uncertainties
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UQ components and methods

Input Computer

Model
Output

Spectral Methods

Bayesian Framework

• Sensitivity analysis

• Small parameter perturbations

• Predictability assessment

• Larger parameter uncertainties

• Parameter estimation/calibration

• Inverse problems
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UQ components and methods

Input Computer

Model
Output

Spectral Methods

Bayesian Framework

• Forward UQ methods

• Direct (intrusive)

- Derive new forward model

- Intrusive Spectral Projection (ISP)

• Sampling (non-intrusive)

- Monte-Carlo, Quasi Monte-Carlo

- Non-intrusive Spectral Projection (NISP)
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Non-Intrusive Spectral Projection (NISP)

• Polynomial Chaos expansions for input γ and output Z

γ ≈
∑

k

γkΨk(ξ)

Z = f (γ) ≈
∑

k

fkΨk(ξ)

• Orthogonal projection via quadrature to obtain PC modes

fk =

∫

f (γ)Ψk(ξ)pdf(ξ)dξ ≈
∑

∗

f (γ(ξ∗))w∗
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Challenges tackled in more detail today

• non-linearities/bifurcations
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Challenges tackled in more detail today

• non-linearities/bifurcations

• low-probability/high-impact events
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UQ methods are challenged by..

Nonlinearities,

Bifurcations,

Bimodalities

Tail regions

Limited data

Intrinsic stochasticity

Curse of dimensionality
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UQ methods are challenged by..

Nonlinearities,

Bifurcations,

Bimodalities

Tail regions

Limited data

Intrinsic stochasticity

Curse of dimensionality
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Switching gear...

UQ Challenges

• non-linearities/bifurcations

• low-probability/high-impact events

• limited data

• intrinsic stochasticity

• high dimensionality
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Discontinuities/Nonlinearities/Bifurcations

• Stochastic domain decomposition

• Wiener-Haar Expansions,

Multiwavelets [Le Maı̂tre et al, 2004,2007]

• Multielement PC [Wan & Karniadakis, 2009]

• Data domain decomposition [Sargsyan et al, 2009,2010]

• Data clustering

• Mixture PC expansions

• Adaptive setting

• Does not scale with dimensionality

• For expensive models, can not split much

• Need a ‘smart’ domain decomposition
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

• Computational model - EMIC

• Input parameters

• Rate of CO2 increase (r)

• Climate sensitivity (λ)

• Output observable

• Overturning

streamfunction (Z)

+
++ ++

+ +

+++++++
+

+ ++ ++ +
+

+

+

+++
+

+
++

Rate of CO
2

increase [%]

C
li
m

a
te

s
e

n
s
it
iv

it
y

[K
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7
Recovery

No Recovery+

Sargsyan (SNL) UQ Workshop July 20, 2010 8 / 29



Global representations fail to capture discontinuities

• Computational model - EMIC

• Input parameters

• Rate of CO2 increase (r)

• Climate sensitivity (λ)

• Output observable

• Overturning

streamfunction (Z)
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UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be

subdivided into regions with smooth model response where spectral

uncertainty quantification methods can be used.

Two-step approach:

• Bayesian inference of the location of the discontinuity

• Polynomial chaos representation via parameter domain

mapping at each side of the discontinuity
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Bayesian Inference of the Location of Discontinuity

• Parameterize the discontinuity: r ≈ pc(λ) =
∑K

k=0 ckPk(λ)

• Approximation model:

Mc ≡ g(λ, r) = mL + (mR − mL)
1 + tanh (α(r − pc(λ)))

2

• Noise model postulated: σ(λ, r)

• Likelihood function:

logP(D|Mc) =
N
∑

i=1

log (P(zi|Mc)) = −
N
∑

i=1

(zi − g(λ, r))2

2σ(λ, r)2
.
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Bayesian Inference of the Location of Discontinuity

• Parameterize the discontinuity: r ≈ pc(λ) =
∑K

k=0 ckPk(λ)

• Bayes’ formula: P(M|D) = P(D|M)P(M)
P(D)

-1 -0.5 0 0.5 1

Input parameter

0

0.5

1

1.5

2

m
L

m
R

σ
L

σ
R

discontinuity
sampled by MCMC

Sargsyan (SNL) UQ Workshop July 20, 2010 10 / 29



Highlights

• Any distribution of input points

• Generalizes to multiple dimensions

• Probabilistic representation
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Parameter Domain Mapping

Assume linear discontinuity

Use Rosenblatt

Transformation (RT) to map

the pair of uncertain

parameters (λ,r) to i.i.d.

uniform random variables η1

and η2:

λ = F−1
λ (η1),

r = F−1
r|λ(η2|η1)

Apply the RT mapping to both

sides of the discontinuity
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Discontinuous data represented well with the averaged PC

PCE IN (η1, η2) DOMAIN OUTPUT PDF
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Discontinuous data represented

well with the averaged PC.
Resulting output PDF given input

parameter joint PDF.
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Summary

• A methodology for uncertainty quantification in climate models

with limited data and discontinuities was proposed:

• Bayesian approach to detect and parameterize the

discontinuity as well as the uncertainty associated with it.

• Rosenblatt transformation maps each of the irregular

domains to rectangular ones where the application of the

local spectral methods of uncertainty propagation is feasible.

• “Knowledge Discovery from Climate Data: Prediction, Extremes,

and Impacts” Workshop Proceedings - 9th IEEE International

Conference on Data Mining, 2009.

• Full paper in preparation.
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Switching gear...

UQ Challenges

• non-linearities/bifurcations

• low-probability/high-impact events

• limited data

• intrinsic stochasticity

• high dimensionality
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Dealing with ‘fat’ tails

• Several climate observables ( e.g. climate sensitivity ) exhibit

heavy tails

• require a significant number of simulations to obtain a good

sampling of these regions

• Construct spectral expansions based on...

• Non-classical bases that cluster points in the tail region

• Bases tailored to the expected behavior of the output

• Use spectral expansions for...

• Propagating distributions from input parameters to output

observables

• Surrogate models to accelerate the inference process in

inverse problems
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Pointwise error is large at low-probability regions

Z = f (γ) ≈
∑

k

fkΨk(ξ) =⇒ fk =

∫

f (γ)Ψk(ξ)pdf(ξ)dξ ≈
∑

∗

f (γ(ξ∗))w∗
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Non-classical quadrature points span the tails better

Z = f (γ) ≈
∑

k

fkΨk(ξ) =⇒ fk =

∫

f (γ)Ψk(ξ)pdf(ξ)dξ ≈
∑

∗

f (γ(ξ∗))w∗

γ10-3 10-1 101 103 105 107

Unif­Legendre

Gauss­Hermite

Beta­Jacobi

Log­normal SW

Sargsyan (SNL) UQ Workshop July 20, 2010 18 / 29



Build a custom PC based on input distribution

• Classical PCEs for input γ and output Z

• ξ is normal, Ψk(·) are Hermite - standard!

γ ≈
∑

k

γkΨk(ξ)

Z = f (γ) ≈
∑

k

fkΨk(ξ)

• Customized PCE for output Z with respect to input distribution:

• γ is any, Φk(·) are found by orthogonalization.

γ = γ (as ‘optimal’ as it gets)

Z = f (γ) ≈
∑

k

fkΦk(γ) (hopefully, near optimal)
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Custom PC Expansions show much better

convergence than standard PCE

Input γ belongs to Roe-Baker climate sensitivity distribution.

Synthetic forward model: f (γ) = cos(γ)
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Switching gear...

UQ Challenges

• non-linearities/bifurcations

• low-probability/high-impact events

• limited data

• intrinsic stochasticity

• high dimensionality
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Limited Data

Both observational experiments and computer model simulations
are expensive.

• Need to infer functional representation based on limited number

of model runs/experiments.

• Interpolation (kriging)

• Gaussian Process emulation to assess

the lack-of-knowledge [O’Hagan]

• Extended to stochastic model setting

-1 -0.5 0 0.5 1
Input Parameter

4.5

5

5.5

6

6.5

7

O
u
tp

u
t 

Q
u
an

ti
ty

• Bayesian experimental design

• What are the best locations to take observations?

• At which parameter sets to run climate models to gain

maximal information?
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Switching gear...

UQ Challenges

• non-linearities/bifurcations

• low-probability/high-impact events
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Intrinsic stochasticity

• Stochastic computer models

• Probabilistic representation of the lack-of-knowledge

• Climate buzzword: Stochastic Physics [Palmer & Williams, 2009]

• See previous talk

(Bert Debusschere on Stochastic Reaction Networks)

• Extend Gaussian Process emulation of deterministic codes to the

stochastic case

be Bayesian!!
•
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Curse of Dimensionality

• (Dimension-adaptive) Sparse quadrature integration

• High Dimensional Model Representation (HDMR)

• would not handle discontinuities

• tried cut-HDMR in a chemical kinetics context: fails!

• Proper Generalized Decomposition [Nuoy, 2010]

• Turn it into the blessing of dimensionality [Donoho, 2000]

• Compressive Sensing in spectral methods’ [Doostan et al, 2009]

short answer: no free lunch
•
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Summary

• Nonlinearities, Bifurcations, Bimodalities

• Probabilistic detection of discontinuities followed by domain

mapping and polynomial chaos expansions to construct

model “surrogates”.

• Tail regions

• Employ spectral basis that cluster quadrature points in the

tail to construct surrogate models.

• Construct custom spectral basis based on “expected” shape

of the climate model output to improve convergence of the

spectral expansion.
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Current and future work

• Bring in real climate model data

• Still prohibitively many model runs required: possibly give up

orthogonal projection in favor of Bayesian inference

• Experimental design: inform climate modelers on the optimal

parameter sets to run simulations

• Gaussian process emulation

• Couple with PC, either

a) PC as the mean trend, or

b) uncertain integration via Bayes-Hermite quadrature.

• Patching PC expansions: capture both the mean and the tail

regions

• Climate Science for a Sustainable Energy Future (CSSEF)
• Multi-lab, multi-year project

• UQ needed for calibration, validation and prediction

Sargsyan (SNL) UQ Workshop July 20, 2010 28 / 29



Acknowledgements

• Sandia’s internal
Laboratory Directed Research & Development,

• partially funded by combined support from the DOE

National Nuclear Security Administration and Basic Energy Research,

• DOE Office of Science, Advanced Scientific Computing Research,

Applied Mathematics.

Thank You!

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sargsyan (SNL) UQ Workshop July 20, 2010 29 / 29



Inference of Discontinuity - 3rd order polynomial

Synthetic discontinuous data

zi = (1 + σξ)erf (β(ri − r̃(λi))) .

Use straight lines to infer the

discontinuity

r̃(λ) = c0 + c1λ.
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PC expansion, averaged over discontinuity curves

• PC expansion for each discontinuity curve sample:

Z
L,R
c

(λ, r) = Z̃c(η1, η2) =
P
∑

p=0

zpΨ
(2)
p (η1, η2)

• Model expansion depends on the parameter location:

Zc(λ, r) =

{

ZL
c
(λ, r) if (λ, r) ∈ DL

ZR
c
(λ, r) if (λ, r) ∈ DR

.

• Average over all PC expansions via RT:

Ẑ(λ, r) =

∫

C

p(c)Zc(λ, r)dc =

∫

[0,1]K+1

ZR−1(~η)(λ, r)d~η



Custom Basis’ Quad Points Extend to the Tail

(pdf shape from Roe & Baker, Science 2007)
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Custom Basis’ Quad Points Extend to the Tail

(pdf shape from Roe & Baker, Science 2007)
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Accuracy of tail probabilities

P(f > a) =

∫

γ:f (γ)>a

pdf(γ)dγ

• Compare P(fexact > a)
against P(fPC > a).

• Accuracy depends both on

• |fexact − fPC|.

• how accurate are the

the regions where

f > a.
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Test probability errors

Forward model:

f (γ) = exp(0.5γ − 1)

• γ is a truncated

log-normal

PC expansions:

• Legendre polynomials

• Hermite polynomials

• Custom basis

(truncated

log-normal)
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Test probability errors

Custom PC
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Hermite PC
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