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Background

e 1997-2002, B.S., Applied Mathematics and Applied Physics
e Moscow Institute of Physics and Technology

e 2002-2007, Ph.D., Applied and Interdisciplinary Math

e University of Michigan, Dept of Mathematics
e Thesis: “Mean First Passage Times in the
Near-Continuum Limit of Birth-Death Processes”

e since July 2007, Postdoctoral Appointee

e Sandia National Labs, Reacting Flow Research Dept
(8351)
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Projects while at Sandia

e "Stochastic Dynamical Systems: Spectral Methods for the Analysis
of Dynamics and Predictability”

supported by DOE ASCR Applied Math,
Pl: Bert Debusschere

e “Uncertainty Quantification for Large Scale Ocean Circulation
Predictions”

supported by Sandia Seniors’ Council LDRD,
PIl: Cosmin Safta

¢ "Quantifying the Margin of High-Consequence Climate Change”

supported by NNSA and DOE BER,
Sandia-CA POC: Khachik Sargsyan

e “Analysis of Stochasticity in Immune System Signaling Pathways”

supported by UTMB-Sandia Joint Institute of Biosecurity,
Pl1: Bert Debusschere
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Uncertainty Quantification: what, how, why?

e What is UQ?

e The effect of input uncertainties on the outputs of
interest.
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Uncertainty Quantification: what, how, why?

e What is UQ?
e The effect of input uncertainties on the outputs of
interest.
e Uncertainty sources

e Model parameters
o Initial/boundary conditions
e Model geometry/structure
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Uncertainty Quantification: what, how, why?

e What is UQ?
e The effect of input uncertainties on the outputs of
interest.
e Uncertainty sources
e Model parameters
o Initial/boundary conditions
e Model geometry/structure
e Why is it important?
Model validation
Confidence assessment
Optimal design
Data assimilation

- Combination of measurements and model
predictions to obtain accurate representations.
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Uncertainty Quantification: Components and Methods

e UQ components
e Sensitivity analysis
- Small parameter perturbations
o Predictability assessment
- Larger parameter uncertainties
e Parameter estimation
- Inverse problem
e Dynamical analysis
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Uncertainty Quantification: Components and Methods

e UQ components
e Sensitivity analysis
- Small parameter perturbations
o Predictability assessment
- Larger parameter uncertainties
e Parameter estimation
- Inverse problem
e Dynamical analysis

e UQ Methods
e Direct (intrusive)
- Derive new forward model
- Intrusive Spectral Projection (ISP)
e Sampling (non-intrusive)
- Monte-Carlo, Quasi Monte-Carlo
- Non-intrusive Spectral Projection (NISP)
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UQ methods are challenged by..

e Nonlinearities,
Bifurcations, [
Bimodalities il

e Intrinsic stochasticity

o Limited data U /\

o Tail regions

e Curse of dimensionality
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e "Stochastic Dynamical Systems: Spectral Methods for the Analysis
of Dynamics and Predictability”

supported by DOE ASCR Applied Math,
Pl: Bert Debusschere

e “Uncertainty Quantification for Large Scale Ocean Circulation
Predictions”

supported by Sandia Seniors’ Council LDRD,
PIl: Cosmin Safta

¢ "Quantifying the Margin of High-Consequence Climate Change”

supported by DOE BER,
Sandia-CA POC: Khachik Sargsyan

e “Analysis of Stochasticity in Immune System Signaling Pathways”

UTMB-Sandia Joint Institute of Biosecurity,
Pl1: Bert Debusschere
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Stochastic Reaction Networks

e Reaction networks involving small number of molecules necessitate
the use of stochastic modeling instead of the deterministic one.
E.g.

e Microbial processes
(bioenergy, bioremediation)

e Surface catalytic reactions
(fuel cells, batteries)

e Immune system signaling reactions
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Stochastic Reaction Networks

e Reaction networks involving small number of molecules necessitate
the use of stochastic modeling instead of the deterministic one.
E.g.

e Microbial processes
(bioenergy, bioremediation)

e Surface catalytic reactions
(fuel cells, batteries)

e Immune system signaling reactions

e SRNs are modeled as Jump Markov Processes

e Governed by Chemical Master Equation
P(X(t) =n) =3, AumP(X(t) = n)

e Reduces to deterministic Rate Equations in the large
volume limit

e Trajectories simulated by Gillespie’s Stochastic
Simulation Algorithm (SSA, Gillespie, 1977)
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Goals and Tools

X(1,0,X)
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Goals and Tools

X(1,0,X)

e Develop tools for predictability(X) and dynamical analysis(t)
of SRNs accounting for
e Inherent stochasticity (0)
e Model/parameter variability ()
e Limited data
D= {Xi}f'vzl
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Goals and Tools

X(0, )

e Develop tools for predictability(X) and dynamical analysis(t)
of SRNs accounting for
e Inherent stochasticity (0)
e Model/parameter variability ()
e Limited data
D= {Xi}f'vzl

e Predictability assessment

e Fix 1, focus on A\ dependence
e Polynomial chaos; Bayesian inference; Domain
decomposition

K.Sargsyan (SNL) 8351 Seminar Nov 23, 2009



Schldgl Model is a prototype bistable model

e Reactions a
A+2X 23X
a
as
B X
as
e Propensities
a; = ki AX(X —1)/2,
a =kX(X-1)(X-2)/6,
az = kgB,
as = k4X.
e Nominal parameters
k1A 0.03
ko 0.0001
k3B =\ 200
ky 3.5
A 10°
B 2-10°
X(0) 250
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Polynomial Chaos expansion represents any random

variable as a polynomial of a standard random variable

e Truncated PCE: finite dimension n and order p

X(0) ~ > a¥i(n)
k=0

with the number of terms P + 1 = (”nTIj’!)!.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]
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Polynomial Chaos expansion represents any random

variable as a polynomial of a standard random variable

e Truncated PCE: finite dimension n and order p
P
X(0) ~ > cxWi(n)
k=0

with the number of terms P + 1 = (”nTIj’!)!.

e n=(n, - ,n,) standard i.i.d. r.v.
U, standard orthogonal polynomials
ci spectral modes.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]
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Polynomial Chaos expansion represents any random

variable as a polynomial of a standard random variable

e Truncated PCE: finite dimension n and order p
P
X(0) ~ > cxWi(n)
k=0

with the number of terms P + 1 = (”nle’!)!.

e n=(n, - ,n,) standard i.i.d. r.v.
U, standard orthogonal polynomials
ci spectral modes.

e Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]
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Galerkin Projection is typically needed

PC expansion: X(8) ~ p_ycx¥i(n) = gp(n)

Orthogonal projection: ¢, = “E@%
k
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Galerkin Projection is typically needed

PC expansion: X(8) ~ p_ycx¥i(n) = gp(n)

Orthogonal projection: ¢, = “E@%
k

e Intrusive Spectral Projection (ISP)
* Direct projection of governing equations
* Leads to deterministic equations for PC coefficients
« No explicit governing equation for SRNs
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Galerkin Projection is typically needed

PC expansion: X(8) ~ p_ycx¥i(n) = gp(n)

Orthogonal projection: ¢, = “%@%
k

e Intrusive Spectral Projection (ISP)
* Direct projection of governing equations
* Leads to deterministic equations for PC coefficients
« No explicit governing equation for SRNs

e Non-intrusive Spectral Projection (NISP)
* Sampling based
* No explicit evolution equation for X needed
« Galerkin projection not well-defined for SRNs
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Bayesian inference handles the intrinsic stochasticity well

Posterior Likelihood Prior

—N ~ =~

P(c|D) x P(D|c) P(c)
N

L(e) = P(Dle) = ] ] pot,(X;)

i=1

Noise model is inherent in SSA data D = {X;}¥,
Uniformly distributed priors

Posterior exploration using Markov Chain Monte Carlo
(MCMC)

The whole posterior distribution is accessible
Maximum a posteriori (MAP) estimate: ¢¥A? = argmax,P(c|D)
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However, global methods are challenged by

nonlinear/bimodal systems

Normal Random Variable

Gauss-Hermite PC Legendre-Uniform PC
0. 0.
04 04 /\ \ :Eéag"dpgl::3

— PC Order=10
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However, global methods are challenged by

nonlinear/bimodal systems

Lognormal Random Variable

Gauss-Hermite PC Legendre-Uniform PC
— Exact PDF — Exact PDF
0.5 — PC Order =3 0.5 — PC Order =3
— PC Order=10 — PC Order=10
04 0.4
® <
E 0.3 ; 03
02 0.
0.1 0.1
10 20 10 20 3
X X
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However, global methods are challenged by

nonlinear/bimodal systems
Binormal Random Variable

Gauss-Hermite PC Legendre-Uniform PC

— Exact PDF
— Exact PDF — PC Order =3
0.5f |— PC Order =3 0.5f | — PC Order = 10
— PC Order=10
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Adaptivity criterion for domain decomposition

e Domain decomposition methods reduce the
effect of nonlinearities/modalities

e Adaptivity criterion based on
Kullback-Leibler divergence
(or relative entropy):

p(Px, Py) = /P(z) log PX(Z)dZ ~ lZlog Px(X;)

Py(z) ~ N< 7 Py(Xi)
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PC Inference for fixed parameter values

e Fix the parameter \
Gather SSA data D = {X;}¥

Infer the model parameters ¢;’s, where X = Zf:o cx¥r(n)

If the representation is not satisfactory (see the criterion), split
the data domain and proceed recursively

PDF of X

100 200 300 400 500 600 700 800
X
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Parametric uncertainty propagation through PCE

Postulate parametric uncertainty A= X+ Al

Gather two-dimensional data D = {(X;, i)},

Infer the model parameters ¢;’s, where X = Zf:o cxVe(n,m)
If the representation is not satisfactory (see the criterion), split
the data domain and proceed recursively

Data PDF ——
MAP-PCPDF -~

325 - Original Data
MAP-PC Data
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Goals and Tools

X(1,0,X)

K.Sargsyan (SNL) 8351 Seminar Nov 23, 2009 18/40



Goals and Tools

X(1,0,X)

e Develop tools for predictability(X) and dynamical analysis(t)
of SRNs accounting for
e Inherent stochasticity (0)
e Model/parameter variability ()
e Limited data
D= {Xi}f'vzl
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Goals and Tools

X(,0)

e Develop tools for predictability(X) and dynamical analysis(t)
of SRNs accounting for
e Inherent stochasticity (0)
e Model/parameter variability ()
e Limited data
D= {Xi}f'vzl

e Dynamical analysis

e Fix A, focus on ¢ dependence
e Polynomial chaos; Karhunen-Loeve decomposition;
Rosenblatt transformation; Data clustering
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Karhunen-Loeve decomposition reduces stochastic

process to a finite number of random variables
e KL decomposition:

X(1,0) = X() + 3 &l0)VAdhi(1)
n=1

o Uncorrelated, zero-mean KL variables:

<€n> =0, <§n§m> = Oum

e SSA(continuum) «+— KL(discrete)

X(t) +— &= (&,8,-..)

KL modes, A" £(0)

Time,t n &
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K-L decomposition captures each realization

KL decomposition with 2 modes

KL decomposition with 5 modes

KL decomposition with 10 modes

SSA Realizations

Number of Molecules, X(t)



K-L decomposition captures each realization

700

600

500

400

X(t)

300
200

100
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PC expansion of a random vector

p
£=3 exli(n)
k=0

Galerkin projection

(EWi(n))
(WZ(m))

is not well-defined,
since £ and n do not belong to the same stochastic space.

Cp =
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PC expansion of a random vector

p
£=3 exli(n)
k=0

Galerkin projection

(EWi(n))
(WZ(m))

is not well-defined,
since £ and n do not belong to the same stochastic space.

Cp =

Need a map £ < 7.
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Rosenblatt transformation

e Rosenblatt transformation maps any (not necessarily
independent) set of random variables (¢, ..., ¢&,) to uniform
i.i.d’s {n;}*_, (Rosenblatt, 1952).

m = Fi(&)
m o= Fyi(&lé)
mo= Fapi(61&,61)

T = Fn\n—l,...,l(én‘gn—la <. 7‘51)

e Inverse Rosenblatt transformation & = R~!(n) ensures a
well-defined quadrature integration

(ETe(m) = / R~ ()W (m)dm
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KL+PC+Data Partitioning represent the dynamics of a bimodal process

a) b)

6 ’ i 8| |- KL projected data
A Mixture PC data
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Conclusions and Future Work

e Lessons learned...
e Bayesian methods are well-suited to deal with
intrinsic stochasticity and limited data.
e Data-based partitioning algorithms help to capture
nonlinearities and bimodalities.
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Conclusions and Future Work

e Lessons learned...

e Bayesian methods are well-suited to deal with
intrinsic stochasticity and limited data.

e Data-based partitioning algorithms help to capture
nonlinearities and bimodalities.

e Still plenty to cover...

e Combine parametric uncertainty and
time dependence

e Sparse grid PC projection, HDMR expansion,
smarter domain decomposition algorithms

e Predict optimal partitioning

e Direct CME solution, continuous approximations
(Fokker-Planck)

e PC with discrete random variables
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Details can be found at..

e K. Sargsyan, B. Debusschere, H. Najm and O. Le Maitre,
"Spectral representation and reduced order modeling of the
dynamics of stochastic reaction networks via adaptive data
partitioning”.

SIAM Journal on Scientific Computing, accepted, 2009.

e K. Sargsyan, B. Debusschere, H. Najm and Y. Marzouk,
"Bayesian inference of spectral expansions for predictability
assessment in stochastic reaction networks”.

Journal of Computational and Theoretical Nanoscience, 6:10,
2009.
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e "Stochastic Dynamical Systems: Spectral Methods for the Analysis
of Dynamics and Predictability”

supported by DOE ASCR Applied Math,
Pl: Bert Debusschere

e “Uncertainty Quantification for Large Scale Ocean Circulation
Predictions”

supported by Sandia Seniors’ Council LDRD,
PIl: Cosmin Safta

¢ "Quantifying the Margin of High-Consequence Climate Change”

supported by DOE BER,
Sandia-CA POC: Khachik Sargsyan

e “Analysis of Stochasticity in Immune System Signaling Pathways”

UTMB-Sandia Joint Institute of Biosecurity,
Pl1: Bert Debusschere

K.Sargsyan (SNL) 8351 Seminar Nov 23, 2009



e "Stochastic Dynamical Systems: Spectral Methods for the Analysis
of Dynamics and Predictability”

supported by DOE ASCR Applied Math,
Pl: Bert Debusschere

e “Uncertainty Quantification for Large Scale Ocean Circulation
Predictions”

supported by Sandia Seniors’ Council LDRD,
Pl: Cosmin Safta

¢ "Quantifying the Margin of High-Consequence Climate Change”

supported by DOE BER,
Sandia-CA POC: Khachik Sargsyan

e “Analysis of Stochasticity in Immune System Signaling Pathways”

UTMB-Sandia Joint Institute of Biosecurity,
Pl1: Bert Debusschere

K.Sargsyan (SNL) 8351 Seminar Nov 23, 2009



Meridional Overturning Circulation

[ ] Salinity (PSS)
32 34 36 38

SOURCE: HTTP://EN.WIKIPEDIA.ORG/WIKI/THERMOHALINE_CIRCULATION
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

e Computational Model

e 3D Ocean general circulation
model

e Zonally-averaged atmospheric
model

e Thermodynamic sea-ice model

e Simplified models for river
runoff

FiiilEiii it

e Parameters

e Rate of CO, increase (r)
e Climate sensitivity (\)
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Webster et al - J. Environ. Syst. 31: 39-59, 2007
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Webster et al - J. Environ. Syst. 31: 39-59, 2007

Climate Sensitvity (K)
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Bayesian Inference of the Location of Discontinuity

e Parameterize the discontinuity:

K
= Z CkPk()\)
k=0

e Approximation model:

Me =g\, r) = mp + (mg —my) tanh (a(r — pe(N)))
e Statistical noise model:
2
o(Ar) = op+ (og —op)tanh (a(r — pe(N))) + exp (—W)
e Likelihood function:

N
)\
log P(D|M¢) = Zlog (zilMe)) Z r) .
i=1
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Bayesian Inference of the Location of Discontinuity

r = pc()\) = Z CkPk()\)
k=0

“Likelihood” “Prior”

©
Bayes’ formula: g o)
P(DIM)P(M) e
— RO H e
P/(M|D) PD)
. . Og
“Posterior”  “Evidence” o o Mg
[ ]
Parameters
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Inference of Discontinuity - 3 order polynomial

@ Synthetic discontinuous data
zi = (1 + 0€) tanh (B(r; — 7(\))) -

@ Use straight lines to infer the
discontinuity

F(A) =co + 1\

18 S 1
16 0
C
14 L
2 12 12
.g 10
g ° <
§ e o
2
I
0 20000 40000 4
Sample #
MCMC samples Joint and Marginal Posterior Distributions

K.Sargsyan (SNL) 8351 Seminar Nov 23, 2009 32/40



Parameter Domain Mapping

@ Use Rosenblatt
Transformation (RT) to map
the pair of uncertain
parameters (r,)) to i.i.d.
standard random variables 7,

and n;:
A= F)Tl(nl)v
ro= F,]Al(nzlm)
P Apply the RT mapplng to both %553 of4n.1016 o S Ry 0f4r;10f6 o5

sides of the discontinuity

ROSENBLATT TRANSFORMATION: (r, X\) — (11, m2)
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PC expansion, averaged over discontinuity curves

e PC expansion for each discontinuity curve sample:

P

Ze" (1) =Ze(nm) = 0P (n1,m)
p=0

e Model expansion depends on the parameter location:

ZE(O\r) if (\,r) €D

zer) = {zéfu, P i (Ar)eDp

e Average over all PC expansions via RT:

Z()\,r) :/p(c)Zc()\,r)dc:/ ZRfl(ﬁ)()\,r)dﬁ
c [0, 1]K+1
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Discontinuous data represented well with the

averaged PC

QUADRATURE IN (cp, ¢;) DOMAIN PCE IN (11, 2) DOMAIN

Quadrature points necessary for
integrating/averaging over all

discontinuity curves Averaged-PC representation through

discontinuous data
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As a conclusion..

e A methodology for uncertainty quantification in climate
models with limited data and discontinuities was proposed

e Bayesian approach to detect and parameterize the
discontinuity as well as the uncertainty associated
with it.

e Rosenblatt transformation maps each of the irregular
domains to rectangular ones where the application
of the local spectral methods of uncertainty
propagation is feasible.

- Work-in-progress paper accepted to “Knowledge Discovery
from Climate Data: Prediction, Extremes, and Impacts” - 9th
IEEE International Conference on Data Mining

- Abstract submitted to “Uncertainty Quantification and its
Application to Climate Change” - American Geophysical
Union 2009 Fall Meeting
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As a conclusion..

e A methodology for uncertainty quantification in climate
models with limited data and discontinuities was proposed

e Bayesian approach to detect and parameterize the
discontinuity as well as the uncertainty associated
with it.

¢ Rosenblatt transformation maps each of the irregular
domains to rectangular ones where the application
of the local spectral methods of uncertainty
propagation is feasible.

- Demonstrate the methodology with data from climate
research groups (in touch with MIT group)

- Explore generalizations of this approach for situations where
climate model data is not available for Gaussian quadrature
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UQ of High-Consequence Climate Events

e Develop advance UQ tools that target “tail” events
e “Tails” are low-probability, high-consequence
events
e Current UQ methods do not properly capture
the “tails”

e Methods proposed

e Surrogate modeling via PC expansions
e Alternate PC bases
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Really big picture

e Uncertainty Quantification and Data Assimilation
go hand in hand
e Spectral methods as the most appropriate tool for
forward UQ
e Bayesian methods are well-suited for handling
inverse problems
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Really big picture

e Uncertainty Quantification and Data Assimilation
go hand in hand
e Spectral methods as the most appropriate tool for
forward UQ
e Bayesian methods are well-suited for handling
inverse problems
¢ Relevant application areas
e Stochastic chemical kinetics
- Gene regulation,
immune system signaling,
bacterial/viral behavior
- Interfacial electrochemistry,
electrical storage
e Climate models

K.Sargsyan (SNL) 8351 Seminar Nov 23, 2009



Acknowledgements

e Bert Debusschere (8351)
e Habib Najm (8351)

e Cosmin Safta (8964)

e Youssef Marzouk (MIT)

e DOE ASCR
e Sandia LDRD
e DOE BER

Thank Youl!

Nov 23, 2009 40/40



Adaptivity criterion for domain decomposition

Data: D= {Xi}ﬁvzl

Model: X ~ >"p_y cx¥i(n) = gp(n)

MAP-PC samples: {Y;}¥_,, where Y; = gp ()
e Log-likelihood:

N
log L = log P(Data|Model) = > " log Py(X;)
i=1

o Target log-likelihood (the perfect match log-likelihood, i.e. for
{Yi}évzl =D):
N
log Ly = Zlog Px(X;)
i=1

o Kullback-Leibler divergence (or relative entropy):

N .
p(Px,Py) = / P(z)log 1:;8 de = % ,Zl tog iﬁgﬁ;



Karhunen-Loeve decomposition reduces stochastic

process to a finite number of random variables

e Separate the average:

XO(t7 9) = X(t7 9) - X(t)
e The covariance function is symmetric, bounded and positive
definite. Hence, it can be expanded as a sum

C(tlatZ) = <X0(t1’0)X0 1,0 Z)\nfn 51 fn t2)

n=1

o Positive eigenvalues:

/0 ()t = M (1),

e KL decomposition:

= X() + 3 &0 VALD)
n=1



Clustering precedes data domain decomposition

Finite number of KL variables: &€ = (£1,&,...,&L)
Multidimensional data: {¢@}Y |

K-Center clustering (Gonzalez, 1985)

Distance measure scaled with KL eigenvalues

‘Elbow’ criterion with Explained Variance to pick the optimal
number of clusters

e E.V. = Variance of dataset with all points replaced with their
correspondina cluster’'s center

1

,,,,,,,

Explained Variance fraction

3 4 5 6 7 8 9 -
Number of clusters, K él



The final representation is a Mixture PC model

e Divide data into K partitions with fractions p;:
pr+prt-+px =1

e Find PC expansion for ¢ in each partition:

gpc - Z \I’k CO)

e Superpose the results to obtain PC mixture model
(assuming data points are of equal importance/weight):

£= 5192 w. prob. p;
e Probability distribution function is a mixture of PC PDFs:

Pdfe(x) = p1Pdf ) (x) + - - - + pxPdf ) (x)

Epc



Dynamical Analysis: Big Picture

Fix the parameter X(z,0, A) = X(z,0)
SSA — KL — PCE

Random process — L random v. — L(P+1) deterministic v.

X(t> 9) - 51(9)(1 = le) - Cik(i =1Lk= 07)

L L P
X(1,0) - X(1) = Y €OV = Y (Z cfkwkm)) V()
i=1

i=1
SSA — KL : Karhunen-Loeve (KL) decomposition
of the stochastic process

KL — PCE: Polynomial Chaos expansion
of each KL random variable



Estimate Climate Model PDF

8r Computational Model
I PC Expansion

pdf(z)

o

@ Samples from the joint pdf(r,\) are used to estimate the density of
the surrogate climate model output (z).



